Джон Келлехер - Наука о данных. Базовый курс

Здесь есть возможность читать онлайн «Джон Келлехер - Наука о данных. Базовый курс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Альпина Паблишер, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука о данных. Базовый курс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука о данных. Базовый курс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука о данных. Базовый курс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Нейронные сети и глубокое обучение

Нейронная сеть состоит из нейронов, соединенных друг с другом. Нейрон принимает набор числовых значений в качестве входных данных и сопоставляет их с одним выходным значением. По своей сути нейрон — это функция линейной регрессии с несколькими входами. Единственное существенное различие состоит в том, что в нейроне выходной сигнал определяется другой функцией, которая называется функцией активации.

Функции активации, как правило, отображают выходной сигнал множественной линейной регрессии нелинейно. В качестве функций активации наиболее часто применяются логистическая функция и функция tanh (рис. 12). Обе функции принимают на вход одно значение x , являющееся выходным значением функции множественной линейной регрессии, которую нейрон применяет к своим входным данным. Также обе функции используют число Эйлера, приблизительно равное 2,71828182. Эти функции иногда называют функциями сжатия, поскольку они принимают любое значение от «плюс бесконечности» до «минус бесконечности» и отображают его в небольшом заранее определенном диапазоне. Диапазон выходных значений логистической функции составляет от 0 до 1, а функции tanh — от –1 до 1. Следовательно, выходные значения нейрона, который использует логистическую функцию в качестве своей функции активации, всегда находятся в диапазоне от 0 до 1. Тот факт, что обе функция используют нелинейные отображения, ясно по S-образной форме кривых. Причиной введения нелинейного отображения в нейрон является то, что одним из ограничений функции линейной регрессии с несколькими входами является ее линейность по определению, и если все нейроны в сети будут выполнять только линейные отображения, то и сама сеть также будет ограничена изучением линейных функций. Однако нелинейная функция активации в нейронах сети позволяет ей изучать более сложные (нелинейные) функции.

Стоит подчеркнуть что каждый нейрон в нейронной сети выполняет очень простой - фото 24

Стоит подчеркнуть, что каждый нейрон в нейронной сети выполняет очень простой набор операций:

1. Умножает каждый вход на его вес;

2. Суммирует результаты умножения;

3. Проводит этот результат через функцию активации.

Операции 1 и 2 являются просто вычислением функции регрессии с несколькими входами, а операция 3 использует функцию активации.

Все связи между нейронами в нейронной сети являются направленными, и каждая имеет свой вес. Нейрон применяет вес связи к входящему значению, которое он получает через эту связь, когда вычисляет функцию множественной входной регрессии. Рис. 13 иллюстрирует топологическую структуру простой нейронной сети. Квадраты A и B в левой части обозначают зоны памяти, которые мы используем для представления входных данных в сеть. В этих зонах обработка или преобразование данных не выполняются. Эти узлы можно считать входными или сенсорными нейронами, функция активации которых настроена таким образом, чтобы выходное значение равнялось входному [16]. Круги C, D, E и F на рисунке обозначают нейроны в сети. Бывает полезно представлять нейроны в сети организованными в слои. Сеть на рисунке имеет три слоя нейронов: входной слой содержит A и B , скрытый — C, D и E , а выходной слой содержит F . Понятие «скрытый слой» указывает на тот факт, что нейроны в этом слое не принадлежат ни входному, ни выходному слоям и в этом смысле недоступны взгляду.

Стрелки соединяющие нейроны в сети обозначают поток информации Технически - фото 25

Стрелки, соединяющие нейроны в сети, обозначают поток информации. Технически данная конкретная сеть является нейронной сетью с прямой связью, поскольку в сети нет петель — все соединения направлены в одну сторону, от входа к выходу. Кроме того, эта сеть считается полностью подключенной, поскольку каждый нейрон связан со всеми нейронами в следующем слое сети. Можно создать множество различных типов нейронных сетей, изменив количество слоев, число нейронов в каждом слое, тип используемых функций активации, направление соединений между слоями и другие параметры. На самом деле разработка нейронной сети для конкретной задачи во многом сводится к экспериментам по поиску наилучшей схемы.

Метки на каждой стрелке показывают вес, который узел применяет к информации, передаваемой по этому соединению. Например, есть стрелка, соединяющая C с F , которая указывает, что выходные данные из C передаются как входные данные для F и F будет применять к ним вес.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука о данных. Базовый курс»

Представляем Вашему вниманию похожие книги на «Наука о данных. Базовый курс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука о данных. Базовый курс»

Обсуждение, отзывы о книге «Наука о данных. Базовый курс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x