Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…

Здесь есть возможность читать онлайн «Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: popular_business, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Когда люди не инженерных специальностей слышат «аналитика и Data Science», то представляют разное. Кто-то видит таблицы и графики. Кто-то неподъемно сложные математические формулы. Кто-то программирование и искусственный интеллект…Но истоки этих понятий из области статистики, которая делится на описательную и аналитическую.И эта кажущаяся непостижимой аналитика – на самом деле нескучная, интересная и простая вещь. Чтобы ею пользоваться, не нужно ни изучение сложных формул, ни программирования…

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Но главное – понимать, что все эти программы не заменители «головы» аналитика.

Это всего лишь инструментарий. Но, невзирая вроде на эту понятную истину, постоянно разворачиваются баталии на тему «какая программа лучше». Всегда хочется спросить о критерии «лучшести» – ведь каждая программа имеет свои плюсы и минусы, возможности и ограничения.

Решение об использовании той или иной программной среды – это на самом деле исключительно вопрос профессиональных и личных предпочтений.

Я, например, в своей практике использую несколько инструментов: подавляющая часть того, что я делаю, сделана в SPSS, ОСА и Excel.

SPSS и ОСА – поскольку привык ими пользоваться. Excel – потому, что удобен для бизнеса и его может открыть, просмотреть и отследить логику формул любой бизнес-пользователь.

Для некоторых задач использую R. Но с языков программирования я бы не рекомендовал начинать не-техническим профессионалам. Это дольше, сложнее, да и вряд ли Вы в своей работе столкнетесь с настолько емкими задачами, чтобы не решить их более простым способом.

Потому, что использовать – больше будет зависеть от того, что Вы решите и осилите освоить. Однозначно в бизнесе (за исключением, если Вы профессиональный аналитик и это Ваша ежедневная работа) самым ходовым инструментом является Excel. Бизнес – это клеточки Excel.

Потому и в данной книге вначале будет показана реализация описательных статистик в Excel, чтобы Вы могли применять эти навыки в знакомом офисном приложении. Но по мере усложнения методов и уровня аналитики мы перейдем на PSPP (аналог-заменитель SPSS).

При обучении прикладному инструментарию для нас с Вами критерием «лучшести» является простота и привычность. Чтобы читатели тратили время не на изучение программы, а фокусировались на сути решаемых задач.

И мой выбор для начинающих и не-инженерных профессий – однозначно Excel и PSPP. Но не просто читайте разделы и главы, а после прочтения сходу отрабатывайте методы в этих программах на Ваших массивах.

Упоминая Excel, не хочу сформировать неправильные ожидания к книге, потому сделаю ударение: в книге не будет обучения базовым навыкам работы с Excel. Изложение книги предполагает, что читатель уже на минимальном базовом уровне знаком с Excel.

Очень краткие итоги раздела

Что я хотел, чтобы читатель вынес из раздела:

1. Никогда не ставьте ИЛИ между аналитикой и интуицией. Всегда И. Не умаляйте роль творчества и случайностей.

2. Пять особенностей социально-экономической реальности:

· Изменчивость

· Редкость нормального распределения

· Репрезентативность выборки

· Пристальное внимание к выбивающимся из общего массива случаям / объектам / наблюдениям

· Важность модели

3. Модель должна предшествовать анализу, чтобы иметь возможность объяснить и проинтерпретировать данные.

4. Разницу между данными, метриками, КПД, дашбордами и собственно аналитикой как поиском скрытых закономерностей и построения прогнозов посредством специального набора инструментов.

5. Неважно какой программный продукт / инструмент Вы используете – используйте то, что знаете. Программы / инструменты дополняют и повышают эффективность, но не заменяют человека.

ВВЕДЕНИЕ В СТАТИСТИЧЕСКИЙ АНАЛИЗ

О статистическом анализе

Нас повсюду окружают данные. В соцсетях, в магазинах, рекламе, метро… даже в авиалайнере. Весь мир – это цифры.

Нам может казаться, что собирая данные (при чем все больше и больше), мы контролируем большое количество важных вещей и держим ситуацию под контролем.

Но на самом деле важно уметь отбирать именно те данные, которые помогают понять ситуацию и принять решения, даже располагая неполной информацией. Какие именно данные важны помогает понять модель, о которой мы уже говорили.

С данными помогает работать такая наука как статистика. Именно она позволяет придать понятный вид и смысл огроменным массивам данных, состоящим даже из миллиардов или триллионов значений.

Статистика делится на описательную и аналитическую. Мы в книге рассмотрим оба эти ответвления.

Задача описательной статистикитолько описать объект, процесс, явление – используя среднее значение, % распределения, количество и т. д.

Аналитическая статистикаиспользует более сложные методы, которые позволяют рассчитать взаимосвязи между переменными, а также понять, являются ли эти взаимосвязи просто случайными совпадениями или реальными закономерностями.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»

Представляем Вашему вниманию похожие книги на «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»

Обсуждение, отзывы о книге «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x