Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…

Здесь есть возможность читать онлайн «Никита Сергеев - Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: popular_business, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Когда люди не инженерных специальностей слышат «аналитика и Data Science», то представляют разное. Кто-то видит таблицы и графики. Кто-то неподъемно сложные математические формулы. Кто-то программирование и искусственный интеллект…Но истоки этих понятий из области статистики, которая делится на описательную и аналитическую.И эта кажущаяся непостижимой аналитика – на самом деле нескучная, интересная и простая вещь. Чтобы ею пользоваться, не нужно ни изучение сложных формул, ни программирования…

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев… — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Аналитика в социально-экономических науках (в противовес с естественно-инженерными) сталкивается с пятью главными особенностями – рис. 2 .

Рис 2 Особенности аналитики в социальноэкономической реальности Теперь - фото 5

Рис. 2. Особенности аналитики в социально-экономической реальности

Теперь разберем этот рисунок.

Во-первых, социально-экономическая система – это очень изменчивая система.

Скорость падения яблока прогнозируема – сколько и где-бы Вы это не повторяли. А деньги, трафик, усилия для результата или популярность (то, что изучается в социально-экономических системах) – совершенно нет.

Т.е., если переменные имеют физические ограничения, препятствующие большому разбросу или смещению размеров – и вероятность случая, кардинально отличающегося от основной массы, крайне низка: это одно. Но измерьте, например, корреляции на фондовом рынке за разные периоды – и коэффициенты будут резко меняться от периода к периоду.

А я часто встречаю, как гуманитарии выдают обнаруженные в социально-экономической реальности корреляции как некие реальные «материальные» зависимости (еще и позиционируют эти статистические взаимосвязи как причинно-следственные). Но вот что-то никто ни разу не предсказал по ним поведение фондового рынка…

Или возьмите компанию – измерьте удовлетворенность персонала, внедрите программу улучшений (даже сделайте что-то небольшое) – и у Вас эффект! Но через год Вы заметите как удовлетворенность сползает вниз… Что повлияло? Почему? Новые люди пришли? Старые привыкли?

Во-вторых, здесь не работает закон нормального распределения.

В социально-экономических дисциплинах закон нормального распределения – это непозволительная роскошь. Но многим менеджерам и гуманитариям он почему-то кем-то крепко «вбит в головы»…

Если мерять рост или вес – да, будет работать закон нормального распределения. Но в социально-экономических системах чаще всего наоборот – мы не будем наблюдать красивую симметрию нормальной кривой. Скорее будет обратная картинка: смещение в одну или в другую сторону.

Так, в конкретно взятой стране 2% людей могут владеть 60—90% капитала.

На любом рынке есть несколько игроков, занимающих 60—90% доли рынка.

Несколько рок-исполнителей или авторов книг забирают на себя 90% популярности и продаж.

Из 100 кандидатов в президенты 5% заберут 95% голосов. И т. д.

Да та же удовлетворенность сотрудников работой в компании будет давать смещение или в одну, или во вторую сторону – и в придачу влиять на другие аспекты работы (это так проявляется способность удовлетворенности, как базовой эмоции, к генерализации).

В-третьих, важность выборки случаев / объектов / наблюденийдля применения их ко всей популяции (вся популяция объектов называется «генеральная совокупность»), которую Вы исследуете.

Измерив какие-то физические величины в одном месте, Вы скорее всего получите ± те же самые в другом – ну или с минимальной вариативностью.

Но измерив, например, отношение к кандидату в президенты или расовым вопросам в регионе, Вы точно не получите их ± такими же в другом. Или, замерив удовлетворенность работой в одной компании, Вы не получите тот же результат в другой компании.

И, в-четвертых, важно понимать, что одно-единственное социально-экономическое явление может перевернуть все Ваши представления и закономерности вверх дном.В естественно-технических системах каждый один уникальный случай не ведет к глобальным изменениям.

И пятое – наличие модели для анализа в социально-экономических дисциплинах критически важно.

Модель (Ваше представление, набор предположений об исследуемом объекте) должна предшествовать анализу (кроме случаев, когда у Вас поисковый анализ, цель которого изобрести новые или уточнить существующие модели – но в бизнесе таким вряд ли Вы будете заниматься).

Только по модели Вы можете описать, измерить и прогнозировать поведение / развитие какого-то события или объекта. О важности моделей поговорим отдельно в следующей главе.

Модель

Раздел обязателен к прочтению, даже тем, кому он кажется философским и далеким от аналитики.

Под моделью не имеются ввиду статистические алгоритмы и методы обработки данных.

Словом «модель» обозначается некое представление исследуемого объекта, процесса, явления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»

Представляем Вашему вниманию похожие книги на «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…»

Обсуждение, отзывы о книге «Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x