Тим Филлипс - Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе

Здесь есть возможность читать онлайн «Тим Филлипс - Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Манн, Иванов и Фербер, Жанр: personal_finance, foreign_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе
  • Автор:
  • Издательство:
    Манн, Иванов и Фербер
  • Жанр:
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-00100-572-8
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В последние годы популярность обрела тема «больших данных» (big data). Но многие люди не способны справиться даже с малым объемом данных – и, следовательно, не в состоянии принять взвешенное решение.
Из книги вы узнаете, как собирать, классифицировать, анализировать данные; использовать их в работе; распознавать подтасовки и верно интерпретировать информацию.
Эта книга нужна вам, если вы хотите научиться – или научить своих сотрудников – принимать решения на основе точной информации, а не сомнительных прогнозов.
На русском языке публикуется впервые.

Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Перспектива больших данных в том, что мы сможем узнать еще больше. Хотя не все так просто. Датафикация не гарантирует финального результата, который вы сможете использовать. Подавляющий объем новых данных плохого качества или с трудом поддается анализу. Например, сегодня практически все системы видеонаблюдения оснащены цифровыми камерами. Однако компьютеры пока не могут «смотреть» изображения с этих камер и определять, что они видят, кроме элементарных, но важных вещей, например большого скопления людей. Хранение тысяч документов в формате текстового редактора – это замечательно, если вам нужно найти слово или фразу, но уже не так хорошо, если у вас нет времени читать все документы по результату поиска. Большинство людей осуществляют поиск для решения проблемы, а не потому что хотят что-нибудь почитать.

Большие данные по определению представляют собой слишком объемный и сложный массив информации по сравнению с теми базами, с которыми обычно работают компании. Для управления этими данными, для их обновления и обеспечения их безопасности не обойтись без применения специальных технологий. Это сложно и дорого, и большинство компаний не могут себе этого позволить. Если ваша организация в их числе, то чем вам могут оказаться полезными большие данные?

Во-первых, те, кто работает с ними, предлагают самые разные варианты их использования для повышения эффективности бизнеса, нередко даже бесплатно. Самый очевидный пример – целый ряд сервисов от компании Google: это и карты Google Maps, и новостные ленты с персональными настройками, и отчеты о статистике по сайтам, которые составляет Google Analytics.

Большие данные также способствуют решению проблем, позволяя поставщикам услуг создавать экспертные системы на основе машинного обучения и искусственного интеллекта. Самым простым примером может служить рекомендательный сервис интернет-магазина Amazon «Люди, купившие это…». Такой тип приложения с использованием «коллективного разума» обладает свойствами, характерными для больших данных: этот сервис не идеален, потому что механизм его работы заключается в том, что он ищет соответствия выявленным ранее закономерностям в информации и совмещает их с потенциальными потребностями пользователя. Тем не менее этот алгоритм работает быстро и лучше, чем просто догадка, а, как нам уже известно, большинство сотрудников впустую тратят 60 % рабочего времени и интуиция не слишком эффективное руководство для принятия решений.

Эти экспертные системы датафицируют функции, которые раньше относились к области человеческих навыков, например набор текста и перевод. Признайтесь, вам нравится перепечатывать тексты? Качество оборудования, распознающего речь, стало гораздо выше, но не потому что мы изобрели новые принципы работы программного обеспечения этого типа, а потому что компьютеры применяют большие данные для самостоятельного обучения. Обучение экспертных систем происходит за счет введения аудиозаписей, отобранных из интернета, вместе с расшифровкой, после чего система анализирует их и самостоятельно «обучается». Если вы не используете ПО для переформатирования аудиозаписей в текст, потому что вы попробовали это в 1990-х годах и получилась полная ерунда (а так оно и было), протестируйте современные онлайн-приложения, например Transcribe, и вы будете поражены. Эти сервисы бесплатны или предлагают свои услуги за символическую стоимость. В основе их работы лежат большие данные, а вы пользуетесь только конечным результатом. Можете ли вы использовать большие данные как-то еще? Да и нет.

Есть два способа, как большие данные могут стать хорошей инвестицией даже для компаний малого бизнеса. Во-первых, исследование их можно применить для улучшения собственных данных: примерами могут быть оценка внешней кредитоспособности или способность автоматически отслеживать лоты, когда они выставляются на продажу на онлайн-аукционах. Это делается в интернете, и существует специальная платформа под названием Kaggle для исследователей разных уровней, которые занимаются поиском решения разных задач на основе больших данных. Компании предлагают различные задачи и назначают вознаграждение, а гики со всего мира борются за него, предлагая собственные варианты решения проблемы. Одной из последних предложенных задач был поиск оптимальных способов работы по управлению клиентскими рекламациями от компании BNP Paribas [7](вознаграждение $30 000) и определение самых довольных клиентов компании Santander [8](вознаграждение $60 000).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»

Представляем Вашему вниманию похожие книги на «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе»

Обсуждение, отзывы о книге «Управление на основе данных. Как интерпретировать цифры и принимать качественные решения в бизнесе» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x