Почему для начальных наблюдений временного ряда у нас получился столь широкий диапазон интервального прогноза? Как построить статистическую модель с приемлемым диапазоном интервального прогноза? Стоит ли при этом исключать из расчетной базы данных часть наблюдений? И если исключать часть наблюдений все-таки необходимо, то как определить оптимальную выборку данных, которая необходима нам для составления предсказаний с оптимальным диапазоном интервального прогноза?
Чтобы ответить на эти вопросы, необходимо сделать следующее. Во-первых, познакомиться с такими понятиями, как устойчивость прогностической модели к внешним шокам; во-вторых, узнать, какого рода бывают изменения структурной стабильности временного ряда; в-третьих, научиться проводить тесты Чоу на структурную стабильность и на точность прогноза; в-четвертых, освоить методику проведения теста Д. Гуйарати по определению характера структурного сдвига; и, в-пятых, на основе результатов последнего теста научиться выделять выборку данных, необходимую для получения предсказаний с оптимальным диапазоном интервального прогноза.
Контрольные вопросы и задания
1. При каком уровне надежности статистически значим свободный член уравнения авторегрессии, если его p -значение равно 0,037226? Стоит ли его включать в уравнение, если мы хотим составить уравнение регрессии с 99 %-ным уровнем надежности?
2. С помощью какого алгоритма действий уравнения авторегрессии проверяются на автокорреляцию в остатках? При использовании LM -теста Бройша — Годфри какой лаг следует установить в мини-окне LAG SPECIFICATION при тестировании уравнений авторегрессии 1-го AR(1), 2-го AR(2) и 3-го порядков AR(3)? В каком случае LM -тест Бройша — Годфри свидетельствует об отсутствии автокорреляции в остатках?
3. С помощью какого алгоритма действий проверяются остатки на стационарность? Используются ли при тестировании остатков на стационарность их исходные уровни или первые разности? В каком случае результаты расширенного теста Дикки — Фуллера показывают стационарность остатков?
4. С помощью какого алгоритма действий можно получить описательную статистику? Назовите тест, с помощью которого остатки определяются на нормальное распределение? Как интерпретируются результаты этого теста? В каком случае можно говорить о левосторонней или правосторонней асимметрии в остатках, их «островершинном» или «плосковершинном» распределении?
5. Каким образом в EViews можно рассчитать точечный прогноз? Можно ли строить интервальные прогнозы исходя из их нормального распределения, если тестирование показало, что их распределение нельзя считать нормальным? Если — да, то в каком случае это можно делать?
6. Внимательно изучите табл. 4.10, а затем ответьте на следующие вопросы. Назовите уровень надежности, при котором доля точных интервальных прогнозов в большей степени соответствует заданному уровню надежности. При каком уровне надежности разница между фактическим и заданным уровнем надежности достигает своего максимума? Какую долю точных интервальных прогнозов можно получить, снизив заданный уровень надежности до 90 %?
7. Почему в полученной статистической модели возникла проблема избыточной ширины интервального прогноза? Подтвердите наличие этой проблемы конкретными цифрами. Как избыточный интервальный прогноз отражается на качестве прогнозирования?
Глава 5
Тестирование структурной нестабильности и построение нестационарной статистической модели с оптимизированным временным рядом
5.1. Тестирование авторегрессионного процесса на стационарность путем нахождения обратных единичных корней
В главе 4 мы убедились, что с помощью уравнения авторегрессии USDOLLAR = а × USDOLLAR(-l) + b × USDOLLAR(-2) можно строить точные интервальные прогнозы с 95 %-ным уровнем надежности. Во всяком случае, прогноз по этой статистической модели на май 2010 г. показал, что доля точных интервальных прогнозов очень близка к заданному 95 %-ному уровню надежности, рассчитанному на основе нормального распределения. И это несмотря на то, что сами остатки, полученные в результате решения уравнения регрессии, нельзя назвать нормально распределенными. Правда, при этом для части наблюдений у нас получились слишком широкие интервальные прогнозы. Как далее выяснится, решить эту проблему можно с помощью тестирования произошедших во временном ряде структурных изменений.
Читать дальше
Конец ознакомительного отрывка
Купить книгу