Mars was expected to be similar to the Moon in another respect, one which might well have served as a warning. A theoretical speculation dating from the 1960s was now entirely confirmed. Earth and Venus are both built from very roughly equal amounts of rock and unoxidized metals, particularly iron. The two components are largely separate, with the metals on the inside, the rocks on the outside, which raises the problem of how they got that way. Given a homogeneous, solid mixture of rock and metal in the first place, the metal would not sink to the middle. So much was realized. Perhaps when the planets were formed from a hot gas the metal was the first to condense. Then the rocks condensed later around the metal. This would solve the problem in one move. The trouble was that calculation showed rock and metal should both condense more or less together, as a mixture.
The solution came in a most surprising way. It was natural in the first calculations to assume the temperature of the cooling gases went steadily lower and lower as time went on. But this apparently reasonable hypothesis wasn’t right. The temperature first went down, then it lifted for a while, before taking a final plunge in the last cooling phase. The temperature curve had first a minimum, then a maximum, after which it declined away. Condensation of rock and metal occurred equally at the minimum. The surprise came with a calculation which showed that although the rock and metal condensed together, they would not evaporate together at the succeeding temperature maximum. The metal would evaporate, but not the rock. So in the final decline of temperature it would be the metal that would condense bodily around the rock. Earth and Venus had the metal and rock separate, all right, but the wrong way round, the metal on the outside, not the inside.
This arrangement—an inner ball of rock surrounded by a substantially more dense shell of metal, the shell with a similar mass to the ball—was quite unstable, however. The shell collapsed inward, so that shell and ball interchanged themselves. The whole Earth was turned inside out, like Baron Munchausen’s fox. The same was true for Venus, but not for the Moon or Mars. Neither the Moon nor Mars had very much metal, and what they had was still outside the rock. Their outer metallic shells had never become massive enough for the same instability to have occurred. A lot turned on the difference, on Mars having its metal on the outside.
With space technology developed to a state of planet-wise capability, and with the mass of data collected from the many telepuppets now in orbit around the planet, the stage was set for a manned mission to Mars. Although the astronauts assigned to the mission were as dedicated as ever, they were naturally much worried by the sterility problem.
The first lunar rockets had possessed no more than a certified sterility. Used for soft landings, they were dealt with by simple ethylene-oxide techniques. The priority was soon off the sterility problem, however, so far as the Moon was concerned. Cynthia turned out to be herself entirely sterile. No wonder, with the drenching of X-rays she was receiving, and with the cold on her backside and the heat on her frontside. Thereafter nobody had any worries about “ejecta” on the Moon.
Mars was another breed of cats. Twenty years earlier, Mars had already been declared a biological preserve. This had been agreed internationally. As one cognizant biologist put it, “The mere suggestion that fecal material might be jettisoned under conditions which would contaminate the surface is symptomatic of attitudes which fail to give appropriate consideration of exobiological objectives.” Such irresponsible procedures were condemned, totally and emphatically. In plain language, readily understandable to one and all, this meant you couldn’t shit on Mars.
A tremendous amount of research, it is true, had been put into the development of space suits equipped with really efficient “biological barriers,” as the pundits of NASA put it. Be this as it may, all astronauts found these things the very devil. It seemed much simpler to go chronically constipated.
Then come the problem of back-contamination, not that there seemed much chance of pathogens existing on Mars. Nobody at NASA was ever known to call a spade a spade, or to use a simple word where a complicated one would do. In plain language, again, precautions had to be taken against a “bug” being imported back from Mars. So it came about that an incredibly complex quarantine “machinery” was set up. It wasn’t just a matter of keeping the returning astronauts in isolation for some defined period. After all, any bugs that happened to be inside them had already been cooking for three months or more, throughout the return voyage. It was more that the astronauts had to be “degaussed,” that is, to have the contents of the intestinal tract entirely removed, the blood supply withdrawn and replaced, and so forth, all by glove-box techniques.
The first Martian mission was given over to glamour, just like the first lunar mission. It was a case of nipping down from orbit, nipping for a little while out onto the planet itself, nipping back into the module—a quite fat job, this time—and of nipping up again into orbit. Three months out from Earth, three months back, unconscionable thick lumps of bread enclosing an excessively thin slice of meat. Still, the first expedition already cast doubt on the “life on Mars” theory. Not a bug, not a protein, not an amino acid, or any conceivable biochemical relation thereof, was found in the samples brought back to Earth.
The cognizant biologists took a bad knock. They had pushed a lot of people around, spent a lot of money, and achieved precisely nothing. Goaded into a last spasm, they insisted that further tests be made. Although very extensive samplings were taken by the second mission, not a trace of organic material was found. Life did not exist on Mars. Thereafter the planet was given over to the scientist-explorers.
Nothing really epoch-making was expected. Yet the instinct to stand where nobody has stood before is strong in all of us. The third mission set about its task of establishing a long-term Martian station with zest and zeal. Preliminary to setting up a permanent energy supply, the same boring down through the underground glaciers was put in hand. It had all been done before, but not there on Mars. This made the mission interesting and worthwhile.
A great discovery was made during a lull in these preliminary operations. Instruments deep below the surface found sound waves propagating everywhere throughout the ice of the glaciers. Records were immediately flashed back to Earth. They were processed in the NASA laboratories. The amplitude and frequency patterns were definitely not random. Highly complex variations were repeated from time to time, making it virtually certain that the sound waves must be information-carrying. But what, and to whom, and from where? Instructions to the third mission were to keep on transmitting the sound patterns back to Earth and to “proceed” with all due caution.
Here were Martians at last. It was a good story, told with febrile intensity by press, radio, and T.V. The NASA top brass allowed themselves to be dug up for the occasion. This was the very lifeblood of their budget. It was gravely emphasized that timely and responsible decisions would be made, just as soon as the analysis now in progress had ingested the situation.
Actually, nobody was getting anywhere toward cracking the code of the sound signals, which just went on and on without cease, night and day, week after week. If only somebody could have had an idea, an idea for making one single rational contact with the stuff. Then a second contact might have been possible, followed by a third, and so on. But nothing whatsoever came of all the writhing and thrashing.
Читать дальше