Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In fact, there is no way to determine which of them is “in motion” and which is “at rest.” The man in the armchair could consider himself at rest and the plane in motion. And the woman in the plane could consider herself at rest and the earth as gliding past. There is no experiment that can prove who is right.

Indeed, there is no absolute right. All that can be said is that each is moving relative to the other. And of course, both are moving very rapidly relative to other planets, stars, and galaxies.*

The special theory of relativity that Einstein developed in 1905 applies only to this special case (hence the name): a situation in which the observers are moving at a constant velocity relative to one another—uniformly in a straight line at a steady speed—referred to as an “inertial reference system.” 1

It’s harder to make the more general case that a person who is accelerating or turning or rotating or slamming on the brakes or moving in an arbitrary manner is not in some form of absolute motion, because coffee sloshes and balls roll away in a different manner than for people on a smoothly gliding train, plane, or planet. It would take Einstein a decade more, as we shall see, to come up with what he called a general theory of relativity, which incorporated accelerated motion into a theory of gravity and attempted to apply the concept of relativity to it. 2

The story of relativity best begins in 1632, when Galileo articulated the principle that the laws of motion and mechanics (the laws of electromagnetism had not yet been discovered) were the same in all constant-velocity reference frames. In his Dialogue Concerning the Two Chief World Systems, Galileo wanted to defend Copernicus’s idea that the earth does not rest motionless at the center of the universe with everything else revolving around it. Skeptics contended that if the earth was moving, as Copernicus said, we’d feel it. Galileo refuted this with a brilliantly clear thought experiment about being inside the cabin of a smoothly sailing ship:

Shut yourself up with some friend in the main cabin below decks on some large ship, and have with you there some flies, butterflies, and other small flying animals. Have a large bowl of water with some fish in it; hang up a bottle that empties drop by drop into a wide vessel beneath it. With the ship standing still, observe carefully how the little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel beneath; and, in throwing something to your friend, you need throw it no more strongly in one direction than another, the distances being equal; jumping with your feet together, you pass equal spaces in every direction. When you have observed all these things carefully, have the ship proceed with any speed you like, so long as the motion is uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, nor could you tell from any of them whether the ship was moving or standing still.

3

There is no better description of relativity, or at least of how that principle applies to systems that are moving at a constant velocity relative to each other.

Inside Galileo’s ship, it is easy to have a conversation, because the air that carries the sound waves is moving smoothly along with the people in the chamber. Likewise, if one of Galileo’s passengers dropped a pebble into a bowl of water, the ripples would emanate the same way they would if the bowl were resting on shore; that’s because the water propagating the ripples is moving smoothly along with the bowl and everything else in the chamber.

Sound waves and water waves are easily explained by classical mechanics. They are simply a traveling disturbance in some medium. That is why sound cannot travel through a vacuum. But it can travel through such things as air or water or metal. For example, sound waves move through room temperature air, as a vibrating disturbance that compresses and rarefies the air, at about 770 miles per hour.

Deep inside Galileo’s ship, sound and water waves behave as they do on land, because the air in the chamber and the water in the bowls are moving at the same velocity as the passengers. But now imagine that you go up on deck and look at the waves out in the ocean, or that you measure the speed of the sound waves from the horn of another boat. The speed at which these waves come toward you depends on your motion relative to the medium (the water or air) propagating them.

In other words, the speed at which an ocean wave reaches you will depend on how fast you are moving through the water toward or away from the source of the wave. The speed of a sound wave relative to you will likewise depend on your motion relative to the air that’s propagating the sound wave.

Those relative speeds add up. Imagine that you are standing in the ocean as the waves come toward you at 10 miles per hour. If you jump on a Jet Ski and head directly into the waves at 40 miles per hour, you will see them moving toward you and zipping past you at a speed (relative to you) of 50 miles per hour. Likewise, imagine that sound waves are coming at you from a distant boat horn, rippling through still air at 770 miles per hour toward the shore. If you jump on your Jet Ski and head toward the horn at 40 miles per hour, the sound waves will be moving toward you and zipping past you at a speed (relative to you) of 810 miles per hour.

All of this led to a question that Einstein had been pondering since age 16, when he imagined riding alongside a light beam: Does light behave the same way?

Newton had conceived of light as primarily a stream of emitted particles. But by Einstein’s day, most scientists accepted the rival theory, propounded by Newton’s contemporary Christiaan Huygens, that light should be considered a wave.

A wide variety of experiments had confirmed the wave theory by the late nineteenth century. For example, Thomas Young did a famous experiment, now replicated by high school students, showing how light passing through two slits produces an interference pattern that resembles that of water waves going through two slits. In each case, the crests and troughs of the waves emanating from each slit reinforce each other in some places and cancel each other out in some places.

James Clerk Maxwell helped to enshrine this wave theory when he successfully conjectured a connection between light, electricity, and magnetism. He came up with equations that described the behavior of electric and magnetic fields, and when they were combined they predicted electromagnetic waves. Maxwell found that these electromagnetic waves had to travel at a certain speed: approximately 186,000 miles per second.* That was the speed that scientists had already measured for light, and it was obviously not a mere coincidence. 4

It became clear that light was the visible manifestation of a whole spectrum of electromagnetic waves. This includes what we now call AM radio signals (with a wavelength of 300 yards), FM radio signals (3 yards), and microwaves (3 inches). As the wavelengths get shorter (and the frequency of the wave cycles thus increases), they produce the spectrum of visible light, ranging from red (25 millionths of an inch) to violet (14 millionths of an inch). Even shorter wavelengths produce ultraviolet rays, X-rays, and gamma rays. When we speak of “light” and the “speed of light,” we mean all electromagnetic waves, not just the ones that are visible to our eyes.

That raised some big questions: What was the medium that was propagating these waves? And their speed of 186,000 miles per second was a speed relative to what ?

The answer, it seemed, was that light waves are a disturbance of an unseen medium, which was called the ether, and that their speed is relative to this ether. In other words, the ether was for light waves something akin to what air was for sound waves. “It appeared beyond question that light must be interpreted as a vibratory process in an elastic, inert medium filling up universal space,” Einstein later noted. 5

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x