Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Brownian motion was named after the Scottish botanist Robert Brown, who in 1828 had published detailed observations about how minuscule pollen particles suspended in water can be seen to wiggle and wander when examined under a strong microscope. The study was replicated with other particles, including filings from the Sphinx, and a variety of explanations was offered. Perhaps it had something to do with tiny water currents or the effect of light. But none of these theories proved plausible.

With the rise in the 1870s of the kinetic theory, which used the random motions of molecules to explain things like the behavior of gases, some tried to use it to explain Brownian motion. But because the suspended particles were 10,000 times larger than a water molecule, it seemed that a molecule would not have the power to budge the particle any more than a baseball could budge an object that was a half-mile in diameter. 32

Einstein showed that even though one collision could not budge a particle, the effect of millions of random collisions per second could explain the jig observed by Brown. “In this paper,” he announced in his first sentence, “it will be shown that, according to the molecular-kinetic theory of heat, bodies of a microscopically visible size suspended in liquids must, as a result of thermal molecular motions, perform motions of such magnitudes that they can be easily observed with a microscope.” 33

He went on to say something that seems, on the surface, somewhat puzzling: his paper was not an attempt to explain the observations of Brownian motion. Indeed, he acted as if he wasn’t even sure that the motions he deduced from his theory were the same as those observed by Brown: “It is possible that the motions to be discussed here are identical with so-called Brownian molecular motion; however, the data available to me on the latter are so imprecise that I could not form a judgment on the question.” Later, he distanced his work even further from intending to be an explanation of Brownian motion: “I discovered that, according to atomistic theory, there would have to be a movement of suspended microscopic particles open to observations, without knowing that observations concerning the Brownian motion were already long familiar.” 34

At first glance his demurral that he was dealing with Brownian motion seems odd, even disingenuous. After all, he had written Conrad Habicht a few months earlier, “Such movement of suspended bodies has actually been observed by physiologists who call it Brownian molecular motion.” Yet Einstein’s point was both true and significant: his paper did not start with the observed facts of Brownian motion and build toward an explanation of it. Rather, it was a continuation of his earlier statistical analysis of how the actions of molecules could be manifest in the visible world.

In other words, Einstein wanted to assert that he had produced a theory that was deduced from grand principles and postulates, not a theory that was constructed by examining physical data (just as he had made plain that his light quanta paper had not started with the photo-electric effect data gathered by Philipp Lenard). It was a distinction he would also make, as we shall soon see, when insisting that his theory of relativity did not derive merely from trying to explain experimental results about the speed of light and the ether.

Einstein realized that a bump from a single water molecule would not cause a suspended pollen particle to move enough to be visible. However, at any given moment, the particle was being hit from all sides by thousands of molecules. There would be some moments when a lot more bumps happened to hit one particular side of the particle. Then, in another moment, a different side might get the heaviest barrage.

The result would be random little lurches that would result in what is known as a random walk. The best way for us to envision this is to imagine a drunk who starts at a lamppost and lurches one step in a random direction every second. After two such lurches he may have gone back and forth to return to the lamp. Or he may be two steps away in the same direction. Or he may be one step west and one step northeast. A little mathematical plotting and charting reveals an interesting thing about such a random walk: statistically, the drunk’s distance from the lamp will be proportional to the square root of the number of seconds that have elapsed. 35

Einstein realized that it was neither possible nor necessary to measure each zig and zag of Brownian motion, nor to measure the particle’s velocity at any moment. But it was rather easy to measure the total distances of randomly lurching particles as these distances grew over time.

Einstein wanted concrete predictions that could be tested, so he used both his theoretical knowledge and experimental data about viscosity and diffusion rates to come up with precise predictions showing the distance a particle should move depending on its size and the temperature of the liquid. For example, he predicted, in the case of a particle with a diameter of one thousandth of a millimeter in water at 17 degrees centigrade, “the mean displacement in one minute would be about 6 microns.”

Here was something that could actually be tested, and with great consequence. “If the motion discussed here can be observed,” he wrote, “then classical thermodynamics can no longer be viewed as strictly valid.” Better at theorizing than at conducting experiments, Einstein ended his paper with a charming exhortation: “Let us hope that a researcher will soon succeed in solving the problem presented here, which is so important for the theory of heat.”

Within months, a German experimenter named Henry Seidentopf, using a powerful microscope, confirmed Einstein’s predictions. For all practical purposes, the physical reality of atoms and molecules was now conclusively proven. “At the time atoms and molecules were still far from being regarded as real,” the theoretical physicist Max Born later recalled. “I think that these investigations of Einstein have done more than any other work to convince physicists of the reality of atoms and molecules.” 36

As lagniappe, Einstein’s paper also provided yet another way to determine Avogadro’s number. “It bristles with new ideas,” Abraham Pais said of the paper. “The final conclusion, that Avogadro’s number can essentially be determined from observations with an ordinary microscope, never fails to cause a moment of astonishment even if one has read the paper before and therefore knows the punch line.”

A strength of Einstein’s mind was that it could juggle a variety of ideas simultaneously. Even as he was pondering dancing particles in a liquid, he had been wrestling with a different theory that involved moving bodies and the speed of light. A day or so after sending in his Brownian motion paper, he was talking to his friend Michele Besso when a new brainstorm struck. It would produce, as he wrote Habicht in his famous letter of that month, “a modification of the theory of space and time.”

CHAPTER SIX

SPECIAL RELATIVITY 1905

The Bern Clock Tower The Background Relativity is a simple concept It - фото 153

The Bern Clock Tower

The Background

Relativity is a simple concept. It asserts that the fundamental laws of physics are the same whatever your state of motion.

For the special case of observers moving at a constant velocity, this concept is pretty easy to accept. Imagine a man in an armchair at home and a woman in an airplane gliding very smoothly above. Each can pour a cup of coffee, bounce a ball, shine a flashlight, or heat a muffin in a microwave and have the same laws of physics apply.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x