Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

But physics was poised to be upended again, and Einstein was poised to be the one to do it. He had the brashness needed to scrub away the layers of conventional wisdom that were obscuring the cracks in the foundation of physics, and his visual imagination allowed him to make conceptual leaps that eluded more traditional thinkers.

The breakthroughs that he wrought during a four-month frenzy from March to June 1905 were heralded in what would become one of the most famous personal letters in the history of science. Conrad Habicht, his fellow philosophical frolicker in the Olympia Academy, had just moved away from Bern, which, happily for historians, gave a reason for Einstein to write to him in late May.

Dear Habicht,

Such a solemn air of silence has descended between us that I almost feel as if I am committing a sacrilege when I break it now with some inconsequential babble . . .

So, what are you up to, you frozen whale, you smoked, dried, canned piece of soul ...? Why have you still not sent me your dissertation? Don’t you know that I am one of the 1½ fellows who would read it with interest and pleasure, you wretched man? I promise you four papers in return. The first deals with radiation and the energy properties of light and is very revolutionary, as you will see if you send me your work first. The second paper is a determination of the true sizes of atoms ... The third proves that bodies on the order of magnitude 1/1000 mm, suspended in liquids, must already perform an observable random motion that is produced by thermal motion. Such movement of suspended bodies has actually been observed by physiologists who call it Brownian molecular motion. The fourth paper is only a rough draft at this point, and is an electrodynamics of moving bodies which employs a modification of the theory of space and time.

7

Light Quanta, March 1905

As Einstein noted to Habicht, it was the first of these 1905 papers, not the famous final one expounding a theory of relativity, that deserved the designation “revolutionary.” Indeed, it may contain the most revolutionary development in the history of physics. Its suggestion that light comes not just in waves but in tiny packets—quanta of light that were later dubbed “photons”—spirits us into strange scientific mists that are far murkier, indeed more spooky, than even the weirdest aspects of the theory of relativity.

Einstein recognized this in the slightly odd title he gave to the paper, which he submitted on March 17, 1905, to the Annalen der Physik: “On a Heuristic Point of View Concerning the Production and Transformation of Light.” 8Heuristic? It means a hypothesis that serves as a guide and gives direction in solving a problem but is not considered proven. From this first sentence he ever published about quantum theory until his last such sentence, which came in a paper exactly fifty years later, just before he died, Einstein regarded the concept of the quanta and all of its unsettling implications as heuristic at best: provisional and incomplete and not fully compatible with his own intimations of underlying reality.

At the heart of Einstein’s paper were questions that were bedeviling physics at the turn of the century, and in fact have done so from the time of the ancient Greeks until today: Is the universe made up of particles, such as atoms and electrons? Or is it an unbroken continuum, as a gravitational or electromagnetic field seems to be? And if both methods of describing things are valid at times, what happens when they intersect?

Since the 1860s, scientists had been exploring just such a point of intersection by analyzing what was called “blackbody radiation.” As anyone who has played with a kiln or a gas burner knows, the glow from a material such as iron changes color as it heats up. First it appears to radiate mainly red light; as it gets hotter, it glows more orange, and then white and then blue. To study this radiation, Gustav Kirchhoff and others devised a closed metal container with a tiny hole to let a little light escape. Then they drew a graph of the intensity of each wavelength when the device reached equilibrium at a certain temperature. No matter what the material or shape of the container’s walls, the results were the same; the shape of the graphs depended only on the temperature.

There was, alas, a problem. No one could fully account for the basis of the mathematical formula that would produce the hill-like shape of these graphs.

When Kirchhoff died, his professorship at the University of Berlin was given to Max Planck. Born in 1858 into an ancient German family of great scholars, theologians, and lawyers, Planck was many things that Einstein was not: with his pince-nez glasses and meticulous dress, he was very proudly German, somewhat shy, steely in his resolve, conservative by instinct, and formal in his manner. “It is difficult to imagine two men of more different attitudes,” their mutual friend Max Born later said. “Einstein a citizen of the whole world, little attached to the people around him, independent of the emotional background of the society in which he lived—Planck deeply rooted in the traditions of his family and nation, an ardent patriot, proud of the greatness of German history and consciously Prussian in his attitude to the state.” 9

His conservatism made Planck skeptical about the atom, and of particle (rather than wave and continuous field) theories in general. As he wrote in 1882, “Despite the great success that the atomic theory has so far enjoyed, ultimately it will have to be abandoned in favor of the assumption of continuous matter.” In one of our planet’s little ironies, Planck and Einstein would share the fate of laying the groundwork for quantum mechanics, and then both would flinch when it became clear that it undermined the concepts of strict causality and certainty they both worshipped. 10

In 1900, Planck came up with an equation, partly using what he called “a fortuitous guess,” that described the curve of radiation wavelengths at each temperature. In doing so he accepted that Boltzmann’s statistical methods, which he had resisted, were correct after all. But the equation had an odd feature: it required the use of a constant, which was an unexplained tiny quantity (approximately 6.62607 x 10 –34joule-seconds), that needed to be included for it to come out right. It was soon dubbed Planck’s constant, h, and is now known as one of the fundamental constants of nature.

At first Planck had no idea what, if any, physical meaning this mathematical constant had. But then he came up with a theory that, he thought, applied not to the nature of light itself but to the action that occurred when the light was absorbed or emitted by a piece of matter. He posited that the surface of anything that was radiating heat and light—such as the walls in a blackbody device—contained “vibrating molecules” or “harmonic oscillators,” like little vibrating springs. 11These harmonic oscillators could absorb or emit energy only in the form of discrete packets or bundles. These packets or bundles of energy came only in fixed amounts, determined by Planck’s constant, rather than being divisible or having a continuous range of values.

Planck considered his constant a mere calculational contrivance that explained the process of emitting or absorbing light but did not apply to the fundamental nature of light itself. Nevertheless, the declaration he made to the Berlin Physical Society in December 1900 was momentous: “We therefore regard—and this is the most essential point of the entire calculation—energy to be composed of a very definite number of equal finite packages.” 12

Einstein quickly realized that quantum theory could undermine classical physics. “All of this was quite clear to me shortly after the appearance of Planck’s fundamental work,” he wrote later. “All of my attempts to adapt the theoretical foundation of physics to this knowledge failed completely. It was as if the ground had been pulled out from under us, with no firm foundation to be seen anywhere.” 13

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x