Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Hans Albert Einstein was born on May 14, 1904. The new child lifted Mari картинка 146’s spirits and restored some joy to her marriage, or so at least she told her friend Helene Savi картинка 147: “Hop over to Bern so I can see you again and I can show you my dear little sweetheart, who is also named Albert. I cannot tell you how much joy he gives me when he laughs so cheerfully on waking up or when he kicks his legs while taking a bath.”

Einstein was “behaving with fatherly dignity,” Mari картинка 148noted, and he spent time making little toys for his baby son, such as a cable car he constructed from matchboxes and string. “That was one of the nicest toys I had at the time and it worked,” Hans Albert could still recall when he was an adult. “Out of little string and matchboxes and so on, he could make the most beautiful things.” 96

Milos Mari картинка 149was so overjoyed with the birth of a grandson that he came to visit and offered a sizable dowry, reported in family lore (likely with some exaggeration) to be 100,000 Swiss francs. But Einstein declined it, saying he had not married his daughter for money, Milos Mari картинка 150later recounted with tears in his eyes. In fact, Einstein was beginning to do well enough on his own. After more than a year at the patent office, he had been taken off probationary status. 97

CHAPTER FIVE

THE MIRACLE YEAR: Quanta and Molecules, 1905

At the Patent Office 1905 Turn of the Century There is nothing new to be - фото 151

At the Patent Office, 1905

Turn of the Century

“There is nothing new to be discovered in physics now,” the revered Lord Kelvin reportedly told the British Association for the Advancement of Science in 1900. “All that remains is more and more precise measurement.” 1He was wrong.

The foundations of classical physics had been laid by Isaac Newton (1642–1727) in the late seventeenth century. Building on the discoveries of Galileo and others, he developed laws that described a very comprehensible mechanical universe: a falling apple and an orbiting moon were governed by the same rules of gravity, mass, force, and motion. Causes produced effects, forces acted upon objects, and in theory everything could be explained, determined, and predicted. As the mathematician and astronomer Laplace exulted about Newton’s universe, “An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world; to him nothing would be uncertain, the future as well as the past would be present to his eyes.” 2

Einstein admired this strict causality, calling it “the profoundest characteristic of Newton’s teaching.” 3He wryly summarized the history of physics: “In the beginning (if there was such a thing) God created Newton’s laws of motion together with the necessary masses and forces.” What especially impressed Einstein were “the achievements of mechanics in areas that apparently had nothing to do with mechanics,” such as the kinetic theory he had been exploring, which explained the behavior of gases as being caused by the actions of billions of molecules bumping around. 4

In the mid-1800s, Newtonian mechanics was joined by another great advance. The English experimenter Michael Faraday (1791– 1867), the self-taught son of a blacksmith, discovered the properties of electrical and magnetic fields. He showed that an electric current produced magnetism, and then he showed that a changing magnetic field could produce an electric current. When a magnet is moved near a wire loop, or vice versa, an electric current is produced. 5

Faraday’s work on electromagnetic induction permitted inventive entrepreneurs like Einstein’s father and uncle to create new ways of combining spinning wire coils and moving magnets to build electricity generators. As a result, young Albert Einstein had a profound physical feel for Faraday’s fields and not just a theoretical understanding of them.

The bushy-bearded Scottish physicist James Clerk Maxwell (1831–1879) subsequently devised wonderful equations that specified, among other things, how changing electric fields create magnetic fields and how changing magnetic fields create electrical ones. A changing electric field could, in fact, produce a changing magnetic field that could, in turn, produce a changing electric field, and so on. The result of this coupling was an electromagnetic wave.

Just as Newton had been born the year that Galileo died, so Einstein was born the year that Maxwell died, and he saw it as part of his mission to extend the work of the Scotsman. Here was a theorist who had shed prevailing biases, let mathematical melodies lead him into unknown territories, and found a harmony that was based on the beauty and simplicity of a field theory.

All of his life, Einstein was fascinated by field theories, and he described the development of the concept in a textbook he wrote with a colleague:

A new concept appeared in physics, the most important invention since Newton’s time: the field. It needed great scientific imagination to realize that it is not the charges nor the particles but the field in the space between the charges and the particles that is essential for the description of physical phenomena. The field concept proved successful when it led to the formulation of Maxwell’s equations describing the structure of the electromagnetic field.

6

At first, the electromagnetic field theory developed by Maxwell seemed compatible with the mechanics of Newton. For example, Maxwell believed that electromagnetic waves, which include visible light, could be explained by classical mechanics—if we assume that the universe is suffused with some unseen, gossamer “light-bearing ether” that serves as the physical substance that undulates and oscillates to propagate the electromagnetic waves, comparable to the role water plays for ocean waves and air plays for sound waves.

By the end of the nineteenth century, however, fissures had begun to develop in the foundations of classical physics. One problem was that scientists, as hard as they tried, could not find any evidence of our motion through this supposed light-propagating ether. The study of radiation—how light and other electromagnetic waves emanate from physical bodies—exposed another problem: strange things were happening at the borderline where Newtonian theories, which described the mechanics of discrete particles, interacted with field theory, which described all electromagnetic phenomena.

Up until then, Einstein had published five little-noted papers. They had earned him neither a doctorate nor a teaching job, even at a high school. Had he given up theoretical physics at that point, the scientific community would not have noticed, and he might have moved up the ladder to become the head of the Swiss Patent Office, a job in which he would likely have been very good indeed.

There was no sign that he was about to unleash an annus mirabilis the like of which science had not seen since 1666, when Isaac Newton, holed up at his mother’s home in rural Woolsthorpe to escape the plague that was devastating Cambridge, developed calculus, an analysis of the light spectrum, and the laws of gravity.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x