Итак, правильный ответ на вопрос задачи — 2800 причем ноли означают не заведомое отсутствие единиц соответствующих разрядов, а лишь отсутствие достоверных знаний о них. Ноли означают здесь то же, что и вопросительные знаки в предыдущих обозначениях.
Ошибочно думать, что ответ 2856, полученный по правилам арифметики точных чисел, вернее ответа 2800. Ничуть: ведь мы видели, что последние две цифры результата (56) доверия не заслуживают: поручиться за них нельзя. Ответ 2800 предпочтительнее, чем 2856, потому что он не вводит в заблуждение — он прямо утверждает, что достоверны лишь цифры 2 и 8 на месте тысяч и сотен, а какие цифры идут дальше — неизвестно. Ответ же 2856 обманчив: он внушает неверную мысль, будто последние две цифры столь же надежны, как и первые две.
"Нечестно писать больше цифр, чем столько, за сколько мы можем ручаться… Мне очень грустно признаться, что не мало таких чисел, ведущих к превратным представлениям, встречается в лучших сочинениях о паровых машинах… Когда я учился в школе, нам сообщали, что среднее расстояние от Земли до Солнца 65 142 357 английских миль [41] Английская миля равна 1852 м.
. Я удивляюсь, почему не было упомянуто, сколько еще футов и дюймов. Наиболее точные современные измерения позволяют лишь утверждать, что это расстояние не больше 93 и не меньше 92,5 миллиона миль", — писал по этому поводу английский математик Перри.
Итак, при выкладках с приближенными числами надо принимать во внимание не все цифры результата, а только некоторые. Остановимся на том, как надо округлять числа.
ОКРУГЛЕНИЕ ЧИСЕЛ
Округление числа при выкладках состоит в том, что одну или несколько цифр на его конце заменяют нолями. Так как ноли, стоящие после запятой, не имеют значения, то их отбрасывают вовсе. Например:
числа округляют в
3734… 3730 или 3700
5,314… 5,31 или 5,3
0,00731… 0,0073 или 0,007
Если первая из отбрасываемых при округлении цифр есть 6 или больше, то предыдущую увеличивают на единицу. Например:
числа округляют в
4867… 4870 или 4900
5989… 5990 или 6000
3,666… 3,67 или 3,7
Так же поступают, если отбрасывается цифра 5 с последующими за нею значащими цифрами. Например:
числа округляют в
4552… 4600
38,1506… 38,2
Но если отбрасывается только цифра 5, то увеличивать на единицу предшествующую цифру условились лишь тогда, когда она нечетная ; четную же цифру оставлять без изменения. Например:
числа округляют в
735… 740
8645… 8640
37,65… 37,6
0,0275… 0,028
70,5 … 70 [42] Ноль рассматривают как четную цифру.
При обработке результатов действий над приближенными числами руководствуются теми же правилами округления.
ЦИФРЫ ЗНАЧАЩИЕ И НЕЗНАЧАЩИЕ
Под значащими цифрами в учении о приближенных вычислениях разумеют все цифры, кроме ноля, а также и ноль в том случае, если он стоит между другими значащими цифрами. Так, в числах 3700 и 0,0062 все ноли— незначащие цифры; в числах же 105 и 2006 ноли — значащие. В числе 0,0708 первые два ноля — незначащие, третий же ноль — значащая цифра.
В некоторых случаях значащий ноль может находиться и в конце числа; округляя, например, число 2,540002, мы получаем число 2,54000, в котором все ноли на конце — значащие, так как указывают на заведомое отсутствие единиц в соответствующих разрядах. Поэтому, если в условии задачи или в таблице мы встречаем числа 4,0 или 0,80, то должны рассматривать их как двузначные. Округляя число 289,9 в 290, мы также получаем на конце значащий ноль.
СЛОЖЕНИЕ И ВЫЧИТАНИЕ ПРИБЛИЖЕННЫХ ЧИСЕЛ
Результат сложения или вычитания приближенных чисел не должен оканчиваться значащими цифрами в тех разрядах, которые отсутствуют хотя бы в одном из данных чисел. Если такие цифры получились, их следует отбросить посредством округления.
Нетрудно понять основание этого правила. Пусть требуется к 3400 м прибавить 275 м. В числе 3400 мерщик, очевидно, пренебрег десятками метров; ясно, что, прибавив к этому числу 7 десятков метров и еще 5 м, мы получим в сумме не 3675 м, а, скорее всего, результат с иными цифрами на месте десятков и единиц. Поэтому на месте десятков и единиц мы пишем в сумме ноли, которые в данном случае указывают, что вычислителю неизвестно, какие именно цифры должны здесь стоять.
УМНОЖЕНИЕ, ДЕЛЕНИЕ И ВОЗВЫШЕНИЕ В СТЕПЕНЬ ПРИБЛИЖЕННЫХ ЧИСЕЛ
Результат умножения, а также деления приближенных чисел не должен заключать больше значащих цифр, чем имеется их в более коротком данном (из двух чисел то "короче", которое содержит меньше значащих цифр). Лишние цифры заменяют нолями.
Читать дальше
Конец ознакомительного отрывка
Купить книгу