Feynmann - Feynmann 9

Здесь есть возможность читать онлайн «Feynmann - Feynmann 9» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 9: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 9»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 9 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 9», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |y>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем С y( х ) . Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом y для опреде­ления функции

Поскольку это обозначение принято во всем мире неплохо было бы и вам - фото 161

Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что y теперь будет использоваться двояким образом. В (14.14) y обозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ y применяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию y ( х ) обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.

Раз мы определили y ( х ) как амплитуду того, что электрон в состоянии y обнаружится в точке х, то хотелось бы интер­претировать квадрат абсолютной величины y как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке беско­нечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятно­стей , которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, D х ) обозначает вероятность обнаружить электрон в узком интервале D х : возле точки х. Если мы в каждой физичес­кой ситуации будем пользоваться достаточно мелким масшта­бом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой D х ; будет пропорциональна D х. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда < x |y> представляет своего рода «плотность амплитуд» для всех базисных состояний | х > 1 в узком интервале х. Поскольку вероятность обнаружить

iэлектрон в узком интервале D х вблизи х должна быть пропор­циональна длине интервала D х , мы выберем такое определение < х |y> , чтобы соблюдалось следующее условие: Вер. (х, D х )=| | 2D х . Амплитуда < x |y> поэтому пропорциональна амплитуде того, что электрон в состоянии y будет обнаружен в базисном состоя­нии х, а коэффициент пропорциональности выбран так, что квадрат абсолютной величины амплитуды < x |y> дает плот­ность вероятности обнаружить электрон в любом узком интер­вале. Можно писать и так:

Вер. ( x , D х )=| y ( х )| 2D х . (14.17)

Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |y>, а мы хотим знать амплитуду того, что он будет обнаружен в дру­гом состоянии |y>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конеч­ной системе дискретных состояний, мы пользовались уравне­нием (14.5). До изменения нашего определения амплитуд мы должны были писать

А теперь если обе эти амплитуды нормированы так как описано выше то сумма по - фото 162

А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на D x , а сумма по всем значениям х превратится просто в интеграл. При наших измененных опре­делениях правильная формула будет такой:

Амплитуда x y это то что мы теперь называем y х точно так же - фото 163

Амплитуда < x |y> — это то, что мы теперь называем y ( х ) ; точно так же амплитуду < x |y> мы обозначим j( х ) . Вспоминая, что x > комплексно сопряжена с < x |j>, мы можем (14.18) переписать в виде

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 9»

Представляем Вашему вниманию похожие книги на «Feynmann 9» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 9»

Обсуждение, отзывы о книге «Feynmann 9» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.