Feynmann - Feynmann 8

Здесь есть возможность читать онлайн «Feynmann - Feynmann 8» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 8: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 8»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 8 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 8», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

* Если вы пропустили гл. 4, то можете пока просто считать (5.35) невыведенным правилом. Позже, в гл. 8, мы разберем прецессию спина подробнее, будут получены и эти амплитуды.

* Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значитель­ной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.

Г лава 6

ГАМИЛЬТОНОВА МАТРИЦА

§ 1. Амплитуды и векторы

§ 2. Разложение век­торов состояний

§ 3. Каковы базисные состояния мира?

§ 4. Как состояния меняются во времени

§ 5. Гамильтонова матрица

§ б. Молекула аммиака

Пов торить: гл. 49) (вып. 4) «Собст­венные колеба­ния»

§ 1. Амплитуды и векторы

Прежде чем приступить к основной теме этой главы, мы хотели бы изложить несколько математических идей, которые часто встреча­ются в книгах по квантовой механике. Знание их облегчит вам чтение других книг или статей по этому предмету. Первая идея — это тесное математическое подобие между уравнениями квантовой механики и формулами для скаляр­ного произведения двух векторов. Вы помните, что если c и j — два состояния, то амплитуда начать в j и кончить в c может быть записана в виде суммы (по полной совокупности базис­ных состояний) амплитуд перехода из j в одно из базисных состояний и затем из этого базис­ного состояния уже в c:

Мы объясняли это при помощи прибора Штерна Герлаха но сейчас напоминаем - фото 304

Мы объясняли это при помощи прибора Штер­на — Герлаха, но сейчас напоминаем вам, что в этих приборах нет нужды. Уравнение (6.1) — это математический закон, который верен всег­да, все равно, есть ли у нас фильтровальное оборудование или нет; вообще совсем не обя­зательно воображать наличие какого-то при­бора. Можно рассматривать это просто как формулу для амплитуды .

Сопоставим (6.1) с формулой для скалярного произведения двух векторов В и А. Если В и А — обычные трехмерные векторы, то ска­лярное произведение можно написать так:

считая что символ е iобозначает любой из трех единичных векторов в - фото 305

считая, что символ е iобозначает любой из трех единичных векторов в направлениях х.у и z. Тогда B · e 1 — это то, что обычно называют В х , а В · е 2 — то, что обычно называют B y , и т, д. Значит, (6.2) эквивалентно

В х А х у А у г А г ,

а это и есть скалярное произведение В · А.

Сравнение (6.1) с (6.2) обнаруживает следующую аналогию. Состояния c и j соответствуют двум векторам А и В. Базис­ные состояния i отвечают специальным векторам е i, к которым мы относим все прочие векторы. Любой вектор может быть представлен как линейная комбинация трех «базисных векто­ров» е i. Далее, если вам известны коэффициенты при каждом «базисном векторе» в этой комбинации, т. е. три его компонен­ты, то вы знаете о векторе все. Точно так же любое квантовомеханическое состояние может быть полностью описано ампли­тудами < i |j> перехода в базисные состояния, и если эти коэф­фициенты вам известны, то вы знаете все, что можно знать о состоянии. Из-за этой тесной аналогии то, что мы назвали «состоянием», часто именуют «вектором состояния».

Раз базисные векторы е i перпендикулярны друг другу, то существует соотношение

Это соответствует соотношению 325 между базисными состояниями i - фото 306

Это соответствует соотношению (3.25) между базисными со­стояниями i

Теперь вы понимаете почему говорят что базисные состояния i все - фото 307

Теперь вы понимаете, почему говорят, что базисные состоя­ния i все «ортогональны друг другу».

Между (6.1) и скалярным произведением есть одно мини­мальное различие. У нас

а в векторной алгебре АВ ВА В квантовой механике с ее комплексными - фото 308

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 8»

Представляем Вашему вниманию похожие книги на «Feynmann 8» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 8»

Обсуждение, отзывы о книге «Feynmann 8» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x