Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
§ 4. Другие тензоры; тензор инерции
В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока jприблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью s
j=s Е.
Однако для кристалла соотношение между jи Еболее сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем

Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости w, и коэффициент пропорциональности I мы назвали моментом инерции:
L = Iw.
Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость со и момент количества движения L— оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления to и L, вообще говоря, не совпадают (фиг. 31.4).

Фиг. 31.4. Момент количества движения L твердого предмета, вообще говоря, не параллелен вектору угловой скорости w .
Они связаны точно таким же образом, как Еи Р, т. е. мы должны писать:

Девять коэффициентов I ij называют тензором инерции. По аналогии с поляризацией кинетическая энергия для любого момента количества движения должна быть некоторой квадратичной формой компонент w x, w yи w z:

Мы можем снова воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. I ij = I ji .
Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1 / 2 mv 2 , а полная кинетическая энергия равна просто сумме
S 1/ 2mv 2
по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью wтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r — положение частицы относительно центра масс, то ее скорость v задается выражением wXr. Поэтому полная кинетическая энергия равна
к. э.=S 1/ 2m(wX г) 2. (31.18)
Единственное, что нужно теперь сделать,— это переписать wXr через компоненты w х , w y , w zи координаты х, у, z, а затем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем I ij . Проделывая всю эту алгебру, мы пишем:

Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что I xx , например, равно

Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2).
Ну а поскольку r 2 = x 2 + y 2 + z 2, то эту же формулу можно написать в виде
I xx = S m ( r 2 - x 2 ). Выписав остальные члены тензора инерции, получим
Читать дальше