Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 411 Увлечение жидкости между двумя параллельными пластинками Если вы - фото 481

Фиг. 41.1. Увлечение жидкости между двумя параллельными пластинками.

Если вы будете измерять силу, требуемую для поддержания движения верхней пластины, то найдете, что она пропорциональна площади пластины и отно­шению v 0 / d , где d расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально v 0 /d:

Feynmann 7 - изображение 482

Коэффициент пропорциональности h называется коэффициен­том вязкости.

Если перед нами более сложный случай, то мы всегда можем рассмотреть в воде небольшой плоский прямоугольный объем, грани которого параллельны потоку (фиг. 41.2).

Фиг 412 Напряжения сдвига в вязкой жидкости Силы в этом объеме - фото 483

Фиг. 41.2. Напряжения сдви­га в вязкой жидкости.

Силы в этом объеме определяются выражением

Далее д v x д y представляет скорость изменения деформаций сдвига - фото 484

Далее, д v x / д y представляет скорость изменения деформаций сдвига, определенных нами в гл. 38, так что силы в жидкости пропорциональны скорости изменения деформаций сдвига.

В общем случае мы пишем

При равномерном вращении жидкости производная д u х ду равна д v y д x с - фото 485

При равномерном вра­щении жидкости производ­ная д u х /ду равна д v y / д x с обратным знаком, a S xy будет равна нулю, как это и требуется, ибо в равно­мерно вращающейся жидкости напряжения отсутствуют. (Подобную же вещь мы проде­лывали в гл. 39 при определении е xy .) Разумеется, для S yz и S гх тоже есть соответствующие выражения.

В качестве примера применения этих идей рассмотрим дви­жение жидкости между двумя коаксиальными цилиндрами. Пусть радиус внутреннего цилиндра равен а, его скорость будет v а, а радиус внешнего цилиндра пусть будет b , а скорость равна v b (фиг. 41.3).

Фиг 41 3 Поток жидкости между двумя концентрическими цилиндрами - фото 486

Фиг. 41 .3 . Поток жидкости между двумя концентрическими цилиндрами, вращающимися с разными угловыми скоростями.

Возникает вопрос, каково распределение скоростей между цилиндрами? Чтобы ответить на него, начнем с получения формулы для вязкого сдвига в жидкости на рас­стоянии r от оси. Из симметрии задачи можно предположить, что поток всегда тангенциален и что его величина зависит только от r ; v = v ( r ). Если мы понаблюдаем за соринкой в воде, расположенной на расстоянии r от оси, то ее координаты как функции времени будут

x = rcos w t, у = r sinwt,

где w= v / r . При этом х- и y-компоненты скорости равны

v x =- rwsinwt =-w у и v y = rwcoswt=w х. (41.4)

Из формулы (41.3) получаем

Для точек с у 0 имеем д w ду 0 а хд w дх будет равно r d w dr - фото 487

Для точек с у= 0 имеем д w /ду =0, а х(д w /дх) будет равно r ( d w )/ dr ). Так что в этих точках

Разумно думать что величина S должна зависеть от д w д r когда w не - фото 488

(Разумно думать, что величина S должна зависеть от д w r , когда w не изменяется с r, жидкость находится в состоянии равномерного вращения и напряжения в ней не возникают.) Вычисленное нами напряжение представляет собой танген­циальный сдвиг, одинаковый повсюду вокруг цилиндра. Мы можем получить момент сил, действующий на цилиндриче­ской поверхности радиусом r, путем умножения напряжения сдвига на плечо импульса r и площадь 2 p rl :

Поскольку движение воды стационарно и угловое ускорение отсутствует то полный - фото 489

Поскольку движение воды стационарно и угловое уско­рение отсутствует, то полный момент, действующий на ци­линдрическую поверхность воды между радиусами r и r+ dr , должен быть нулем; иначе говоря, момент сил на расстоянии r должен уравновешиваться равным ему и противоположно на­правленным моментом сил на расстоянии r+ dr , так что t не должно зависеть от r . Другими словами, r 3(dw/dr) равно некоторой постоянной, скажем А, и

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x