
В этом можно убедиться следующим образом. Когда r мало, ( t - r /с) не очень отличается от t , и в (21.23) скобки можно разложить в ряд Тэйлора. Первый член разложения дает
n в том же порядке по r /с

Если их сложить, члены с р уничтожатся и слева останется незапаздывающий ток р, т. е. р(t) плюс члены порядка (r/с) 2и выше [например, 1/ 2(r/с) 2Р"']. Эти члены при достаточно малых r (малых настолько, что за время r /с ток р заметно не меняется) будут очень малы.
Стало быть, (21.23) приводит к полям, очень похожим на те, которые дает теория с мгновенным действием, гораздо более похожим на них, чем на поля теории с мгновенным действием и с задержкой; эффекты задержки первого порядка компенсируются вторым членом. Статические формулы очень точны, намного более точны, чем вам могло бы показаться. Конечно, компенсация чувствуется только вблизи от заряда. Для далеких точек эти поправки уже ничего не спасают, потому что временное запаздывание приводит к очень большим эффектам и в конечном счете к важному члену 1/ r — к эффекту излучения.
Перед нами все еще стоит задача расчета электрического поля и доказательства того, что оно совпадает с (21.1'). Правда, уже чувствуется, что на больших расстояниях ответ получится такой, как надо. Мы знаем, что вдали от источников, где возникает распространяющаяся волна, Е перпендикулярно к В (и к r), как на фиг. 21.4, и что с В=Е. Значит, Е пропорционально ускорению р", как и предсказывалось формулой (21.1').

Чтобы получить электрическое поле на всех возможных расстояниях, нужно найти электростатический потенциал. Когда мы подсчитывали интеграл токов для А, желая получить (21.18), то сделали приближение: мы пренебрегли малозаметным изменением r в члене с запаздыванием. Для электростатического потенциала этого делать нельзя, потому что тогда у нас получилось бы {/ r , умноженное на интеграл от плотности заряда, т. е. на константу. Такое приближение чересчур грубо. Надо обратиться к высшим порядкам. И вместо того, чтобы путаться в этих прямых расчетах высших приближений, можно поступить иначе — определить скалярный потенциал из равенства (21.6), используя уже найденное значение векторного потенциала. Дивергенция А в этом случае просто равна dAJdz , поскольку А х и A y тождественно равны нулю. Дифференцируя точно так же, как это делалось выше при вычислении В, получаем
Или в векторных обозначениях


Из равенства (21.6) получается уравнение для j:

Интегрирование по t просто убирает надо всеми р по одной точке:

(Постоянная интегрирования отвечала бы некому наложенному статическому полю, которое, конечно, может существовать, но мы считаем, что у выбранного нами колеблющегося диполя статического поля нет.) Теперь мы можем из

найти электрическое поле Е. После утомительных (хоть и прямых) выкладок [при этом нужно помнить, что p ( t - r /с) и его производные по времени зависят от х, у и z через запаздывание r /с] мы получаем

где
(21.27)
Это выглядит довольно сложно, но интерпретируется просто. Вектор р* — это дипольный момент с запаздыванием и с «поправкой» на запаздывание, так что два члена с р* в (21.26) при малых r дают просто статическое поле диполя [см. гл. 6 (вып. 5), выражение (6.14)]. Когда r велико, то член с р преобладает над остальными, и электрическое поле пропорционально ускорению зарядов в направлении поперек r и само направлено вдоль
Читать дальше