Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.

Три компоненты F, поделенные на Ц(1-v 2/c 2), составляют про­странственные компоненты f m, так что

Теперь мы должны подставить все величины в их релятивистских обозначениях - фото 314

Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1- v 2 / c 2 ), v y / Ц( 1 - v 2 / c 2 ) и v z / Ц( 1- v 2 / c 2 ) представляют t -, у- и z-компоненты 4-скорости u m . Компоненты же Е и В входят в электромагнитный тензор вто­рого ранга F m v . Отыскав в табл. 26.1 компоненты F m v , соответ­ствующие Е х , В г и В v , получим

здесь уже начинает вырисовываться чтото интересное В каждом слагаемом есть - фото 315

здесь уже начинает вырисовываться чтото интересное В каждом слагаемом есть - фото 316

здесь уже начинает вырисовываться что-то интересное. В каж­дом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt , yy , zz все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем

Feynmann 6a - изображение 317

Этим мы ничего не изменили, так как благодаря антисимметрии F m v слагаемое F xx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):

(26.37)

Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произ­ведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.

Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для m=y, и для m = z . Но как обстоит дело с m=t? Посмотрим для забавы, что дает формула

Теперь мы снова должны перейти к Еи В После этого получается или - фото 318

Теперь мы снова должны перейти к Еи В. После этого получается

или Но в 2628 f t бралось равным А это одно и то же что 2638 ибо - фото 319

или

Но в 2628 f t бралось равным А это одно и то же что 2638 ибо vvXB - фото 320

Но в 2628 f t бралось равным А это одно и то же что 2638 ибо vvXB - фото 321

Но в (26.28) f t бралось равным

А это одно и то же, что (26.38), ибо v·(vXB) равно нулю. Так что все идет как нельзя лучше.

В результате наше уравнение движения записывается в элегантном виде:

2639 Как ни приятно видеть столь красиво записанное уравнение форма эта не - фото 322

(26.39)

Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным урав­нением (26.24), что мы и будем делать в дальнейшем.

*Штрих используется здесь для обозначения запаздывающего поло­жения и времени; не путайте его со штрихом в предыдущей главе, обозначавшим систему отсчета, подвергнутую преобразованиям Лоренца.

* В этом параграфе мы не будем принимать с за единицу.

Глава 27

ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС

§ 1. Локальные законы сохранения

§ 2. Сохранение энергии и электромагнитное поле

§ 3. Плотность энергии и поток энергии в электромагнитном поле

§ 4. Неопределенность энергии поля

§ 5. Примеры потоков энергии

§ 6. Импульс поля

§ 1. Локальные законы сохранения

То, что энергия вещества не всегда сохра­няется, ясно как день. При излучении света объект теряет энергию. Однако потерянную энергию можно представить в какой-то другой форме, скажем, в форме энергии света. Поэтому закон сохранения энергии не полон, если не рассмотреть энергию, связанную со светом, в частности, и с электромагнитным полем вооб­ще. Сейчас мы подправим его, а заодно и закон сохранения импульса с учетом электромагнит­ного поля. Мы, разумеется, не можем обсуждать их порознь, ибо, согласно теории относитель­ности, это различные проявления одного и того же четырехвектора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x