Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фие 242 Токи и напряжения в передающей линии Предположим мы наблюдаем - фото 125

Фие. 24.2. Токи и напряже­ния в передающей линии.

Предположим мы наблюдаем за происходящим в двух соседних точках передающей - фото 126

Предположим, мы наблюдаем за происходящим в двух сосед­них точках передающей линии, скажем, на расстояниях х и х+Dх от начала линии. Обозначим напряжение между провод­никами через V(x), а ток в верхнем проводнике I(х} (фиг. 24.2). Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Dx

Или, беря предел при D x ® 0 , получаем

Feynmann 6a - изображение 127

(24.1)

Изменение тока приводит к перепаду напряжения.

Теперь еще раз взгляните на рисунок Если напряжение в х меняется то должны - фото 128

Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок ли­нии от х до x+Dx, то заряд на нем равен q = C 0DxV. Скорость изменения этого заряда равна C 0DxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Dх), Обозначая разность через DI,

Feynmann 6a - изображение 129

Если перейти к пределу при Dx®0, получается

(24.2)

Так что сохранение заряда предполагает, что градиент тока про­порционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов че­рез изоляцию между проводниками, но пока нам достаточно са­мого простого примера.

Оба уравнения передающей линии можно объединить продифференцировав первое по - фото 130

Оба уравнения передающей линии можно объединить, про­дифференцировав первое по t, а второе по x; и исключив V или I. Получится либо

(24.3)

либо 244 Мы снова узнаем волновое уравнение по х В однородной передающей - фото 131

либо

(24.4)

Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать за­кону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d 2/dt 2— это просто 1/v 2. так что

Feynmann 6a - изображение 132

(24.5)

Feynmann 6a - изображение 133

Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффи­циент пропорциональности — это просто характеристический импеданс z 0. Обозначив через V +и I +напряжение и ток для вол­ны, бегущей в направлении +x, вы должны будете получить

(24.6)

Feynmann 6a - изображение 134

Равным образом, для волны, бегущей в направлении -х, полу­чится

Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением

Feynmann 6a - изображение 135

(24.7)

и поэтому есть чистое сопротивление.

Чтобы найти скорость распространения v и характеристиче­ский импеданс z 0передающей линии, нужно знать индуктив­ность и емкость единицы длины линии. Для коаксиального ка­беля их легко подсчитать. Поглядим, как это делается. При рас­чете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/ 2 LI 2 равным магнитной энергии, в свою очередь получаемой интегрированием e 0с 2B 2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/2pe 0с 2r, где r — расстояние от оси. Беря в качестве эле­мента объема цилиндрический слой толщины dr и длины l ,

получаем для магнитной энергии

где а и b радиусы внутреннего и внешнего проводников Интегрируя получаем - фото 136

где а и b радиусы внутреннего и внешнего проводников Интегрируя получаем - фото 137

где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем

(24.8)

Приравниваем эту энергию к 1 I 2 LI 2 и находим 249 Как и следовало ожидать - фото 138

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x