| (Мы возвратимся к задаче о течении жидкости более подробно
в вып. 7, гл. 40 и 41.)
Поскольку СXv=0, то скорость «сухой воды» можно написать в виде градиента от некоторого потенциала
v=-Сj. (12.30)
Каков физический смысл y? Особо полезного смысла нет. Скорость можно записать в виде градиента потенциала просто потому, что течение безвихревое. По аналогии с электростатикой y называется потенциалом скоростей, но он не связан с потенциальной энергией так, как это получается для j. Поскольку дивергенция v равна нулю, то

(12.31)
Потенциал скоростей y подчиняется тому же дифференциальному уравнению, что и электростатический потенциал в пустом пространстве (r=0).
Давайте выберем какую-нибудь задачу о безвихревом течении и посмотрим, сможем ли мы решить ее изученными методами. Рассмотрим задачу о шаре, падающем в жидкости. Если он движется слишком медленно, то силы вязкости, которыми мы пренебрегали, будут существенны. Если он движется слишком быстро, то следом за ним будут идти маленькие вихри (турбулентность) и возникнет некоторая циркуляция воды. Но если шар движется и не чересчур быстро, и не чересчур медленно, то течение воды будет более или менее отвечать нашим предположениям, и мы сможем описать движение воды нашими простыми уравнениями.
Удобно описывать процесс в системе координат, скрепленной с шаром. В этой системе координат мы задаем вопрос: как течет вода около неподвижного шара, если на больших расстояниях течение однородно? Иначе говоря, если вдали от шара течение всюду одинаково? Течение вблизи шара будет иметь вид, показанный линиями потока на фиг. 12.8. Эти линии, всегда параллельные v, соответствуют линиям напряженностей электрического поля.

Фиг. 12.8. Поле скоростей безвихревого обтекания сферы жидкостью.
Мы хотим получить количественное описание поля скоростей, т. е. выражение для скорости в любой точке Р.
Можно найти скорость как градиент от y), поэтому сначала определим потенциал. Мы хотим найти потенциал, который удовлетворял бы всюду (12.31) при следующих двух условиях: 1) течение отсутствует в сферической области за поверхностью шара; 2) течение постоянно на больших расстояниях. Чтобы выполнялось первое ограничение, компонента v, перпендикулярная поверхности шара, должна обращаться в нуль. Это значит, что d y / dr =0 при r =а. Для выполнения второго ограничения нужно иметь d y / dz = v 0 всюду, где r>> а. Строго говоря, нет ни одной электростатической задачи, которая в точности соответствовала бы нашей задаче. Она фактически соответствует сфере с нулевой диэлектрической проницаемостью, помещенной в однородное электрическое поле. Если бы мы имели решение задачи для сферы с диэлектрической проницаемостью x, то, положив x =0, немедленно решили бы нашу задачу.
Мы раньше не разобрали такую электростатическую задачу во всех подробностях; давайте сделаем это сейчас. (Мы могли бы сразу решить задачу о жидкости с v и y, но будем пользоваться Е и j, потому что привыкли к ним.)
Задача ставится так: найти такое решение уравнения С 2j=0, чтобы Е=-Сj равнялось постоянной, скажем Е 0, для больших r и, кроме того, чтобы радиальная компонента Е была равна нулю при r =а. Иначе говоря,

(12.32)

Наша задача включает новый тип граничных условий — когда д j /д r постоянно, а не тот, когда потенциал j постоянен на поверхности. Это немножко другое условие. Получить ответ сразу нелегко. Прежде всего без шара j был бы равен —E 0z. Тогда Е было бы направлено по z и имело бы всюду постоянную величину Е 0 . Мы уже исследовали случай диэлектрического шара, поляризация внутри которого однородна, и нашли, что поле внутри поляризованного шара однородно, а вне его оно совпадает с полем точечного диполя, расположенного в центре шара. Давайте напишем, что искомое решение есть суперпозиция однородного поля плюс поле диполя. Потенциал диполя (см. гл. 6) есть pz/4pe 0r 3. Итак, мы предполагаем, что
Читать дальше