§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конденсатора и перенесен на другую, то между обкладками возникает разность потенциалов, равная

(8.8)
где С — емкость конденсатора. Сколько работы затрачено на зарядку конденсатора? Поступая точно так же, как мы поступали с шаром, вообразим, что конденсатор уже заряжен переносом заряда с одной обкладки на другую маленькими порциями dQ . Работа, требуемая для переноса заряда dQ , равна

Взяв V из (8.8), напишем

Или, интегрируя от Q =0 до конечного заряда Q , получаем

(8.9)
Эту энергию можно также записать в виде

(8.10)
Вспоминая, что емкость проводящей сферы (по отношению к бесконечности) равна


мы немедленно получим из уравнения (8.9) энергию заряженной сферы
(8.11)
Это выражение, конечно, относится также и к энергии тонкого сферического слоя с полным зарядом Q ; получается 5/ 6энергии однородно заряженного шара [уравнение (8.7)].
Посмотрим, как применяется понятие электростатической энергии. Рассмотрим два вопроса. Какова сила, действующая между обкладками конденсатора? Какой вращательный (крутящий) момент вокруг некоторой оси испытывает заряженный проводник в присутствии другого проводника с противоположным зарядом? На такие вопросы легко ответить, пользуясь нашим выражением (8.9) для электростатической энергии конденсатора и принципом виртуальной работы (см. вып. 1, гл. 4, 13 и 14).

Применим этот метод для определения силы, действующей между двумя обкладками плоского конденсатора. Если мы представим, что промежуток между пластинами расширился на небольшую величину Dz, то тогда механическая работа, производимая извне для того, чтобы раздвинуть обкладки, была бы равна
(8.12)
где F — сила, действующая между обкладками. Эта работа обязана быть равной изменению электростатической энергии конденсатора, если только заряд конденсатора не изменился.
Согласно уравнению (8.9), энергия конденсатора первоначально была равна

Изменение в энергии (если мы не допускаем изменения величины заряда) тогда равно

(8.13)
Приравнивая (8.12) и (8.13), получаем

(8.14)

что может также быть записано в виде
(8.15)
Ясно, эта сила здесь возникает от притяжения зарядов на обкладках; мы видим, однако, что заботиться о том, как там они распределены, нам нечего; единственное, что нам нужно, — это учесть емкость С.
Легко понять, как обобщить эту идею на проводники произвольной формы и на прочие составляющие силы. Заменим в уравнении (8.14) F той составляющей, которая нас интересует, а Dz — малым смещением в соответствующем направлении. Или если у нас есть электрод, насаженный на какую-то ось, и мы хотим знать вращательный момент t, то запишем виртуальную работу в виде
DW = tDq,

где Dq — небольшой угловой поворот. Конечно, теперь D(1/C) должно быть изменением 1/С, отвечающим повороту на Dq.
Фиг. 8.3. Чему равен вращательный момент, действующий на переменный конденсатор?
Таким способом мы можем определить вращательный момент, действующий на подвижные пластины переменного конденсатора, показанного на фиг. 8.3.
Вернемся к частному случаю плоского конденсатора; мы можем взять формулу для емкости, выведенную в гл. 6:
Читать дальше