Feynmann - Feynmann 5a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 5a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 5a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 5a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 5a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 5a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Плотность положительных ионов тогда равна

Feynmann 5a - изображение 151

Feynmann 5a - изображение 152

а плотность отрицательных

Feynmann 5a - изображение 153

Суммарная плотность заряда

или 730 Подставляя в 728 увидим что потенциал j должен удовлетворять - фото 154

или

(7.30)

Подставляя в (7.28), увидим, что потенциал j должен удов­летворять уравнению

731 Это уравнение решается в общем виде помножьте обе его части на 2djdx - фото 155

(7.31)

Это уравнение решается в общем виде [помножьте обе его части на 2(dj/dx) и проинтегрируйте по х], но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость j отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять

732 Уравнение 731 дает 733 Заметьте что теперь в правой части - фото 156

(7.32)

Уравнение 731 дает 733 Заметьте что теперь в правой части стоит знак - фото 157

Уравнение (7.31) дает

(7.33)

Заметьте, что теперь в правой части стоит знак плюс (ре­шение не колебательное, а экспоненциальное).

Фиг 77 Изменение потенциала у поверхности коллоидной частицы D - фото 158

Фиг. 7.7. Изменение по­тенциала у поверхности коллоидной частицы. D — дебаевская длина.

Общее решение (7.33) имеет вид

Feynmann 5a - изображение 159

(7.34)

где

Feynmann 5a - изображение 160

(7.35)

Постоянные А и В определяются из добавочных условий. В на­шем случае В должно быть нулем, иначе потенциал для боль­ших х обратится в бесконечность. Итак,

Feynmann 5a - изображение 161

(7.36)

где А — потенциал при x=0 на поверхности коллоидной час­тицы.

Потенциал убывает в e раз при удалении на D (фиг. 7.7). Число D называется дебаевской длиной; это мера толщины ион­ной оболочки, окружающей в электролите каждую большую за­ряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n 0) или уменьшения температуры.

Постоянную А в 736 легко получить если известен поверхностный заряд а на - фото 162

Постоянную А в (7.36) легко получить, если известен поверх­ностный заряд а на поверхности заряженной частицы. Мы знаем, что

(7.37)

Feynmann 5a - изображение 163

Но Е это также градиент j

(7.38)

откуда получается

Feynmann 5a - изображение 164

(7.39)

Feynmann 5a - изображение 165

Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен

(7.40)

Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда s .

Мы сказали, что коллоидные частицы не слипаются вслед­ствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала до­статочно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».

Другой интересный пример — это влияние растворения соли На осаждение белка. Молекула белка — это длинная, слож­ная и гибкая цепь аминокислот. На ней там и сям имеются за­ряды, и временами заряд какого-то одного знака, скажем отри­цательного, распределяется вдоль всей цепи. В результате вза­имного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследст­вие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли мно­го, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 5a»

Представляем Вашему вниманию похожие книги на «Feynmann 5a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 5a»

Обсуждение, отзывы о книге «Feynmann 5a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x