
(8.16)

где А— площадь каждой обкладки. Если промежуток увеличится на Dz, то

Из (8.14) тогда следует, что сила притяжения между двумя обкладками равна
(8.17)
Взглянем на уравнение (8.17) повнимательнее и подумаем, нельзя ли сказать, как возникает эта сила. Если заряд на одной из обкладок мы запишем в виде

то (8.17) можно будет переписать так:

Или поскольку поле между пластинами равно

то

(8.18)
Можно было сразу догадаться, что сила, действующая на одну из пластин, будет равна заряду Q этой пластины, умноженному на поле, действующее на заряд. Но что удивляет, так это множитель 1/ 2. Дело в том, что Е 0 — это не то поле, которое действует на заряды. Если вообразить, что заряд на поверхности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е 0 в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно Е 0 /2. Вот отчего в (8.18) стоит множитель 1/ 2.

Вы должны обратить внимание на то, что, рассчитывая виртуальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с другими предметами и полный заряд не мог изменяться.
Фиг. 8.4. Поле у поверхности проводника меняется от нуля до E 0=s/e 0, когда пересечен слой поверхностного заряда. 1 — проводящая пластина; 2 — слой поверхностного заряда.
А теперь пусть мы предположили, что при виртуальных перемещениях конденсатор поддерживается при постоянной разности потенциалов. Тогда мы должны были бы взять


и вместо (8.15) мы бы имели
что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V = Q / C ), но с противоположным знаком!
Конечно, сила, действующая между пластинами конденсатора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две пластины с разноименными электрическими зарядами должны притягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуальную работу, производимую источником, заряжающим конденсатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V , когда меняется емкость, источник электричества должен снабдить конденсатор зарядом VDC. Но этот заряд поступает при потенциале V, так что работа, выполняемая электрической системой, удерживающей заряд постоянным, равна V 2DC. Механическая работа .FDz плюс эта электрическая работа V 2DC вместе приводят к изменению полной энергии конденсатора на 1/ 2V 2DC. Поэтому на механическую работу, как и прежде, приходится F D z =- 1 / 2 V 2DC.
§ 3. Электростатическая энергия ионного кристалла
Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расстановок атомов (к примеру, энергия химических изменений). Так как атомные силы в основе своей — это силы электрические, то и химическая энергия в главной своей части — это просто электростатическая энергия.
Рассмотрим, например, электростатическую энергию ионной решетки. Ионный кристалл, такой, как NaCl, состоит из положительных и отрицательных ионов, которые можно считать жесткими сферами. Они электрически притягиваются, пока не соприкоснутся; затем вступает в дело сила отталкивания, которая быстро возрастает, если мы попытаемся сблизить их теснее.
Для первоначального приближения вообразим себе совокупность жестких сфер, представляющих атомы в кристалле соли. Строение такой решетки было определено с помощью дифракции рентгеновских лучей. Эта решетка кубическая — что-то вроде трехмерной шахматной доски. Сечение ее изображено на фиг. 8.5. Промежуток между ионами 2,81 Е (или 2,81·10 -8 см ) .
Читать дальше