Горизонтальное расстояние, которое мы считали равным vt , неподвижный по отношению к Земле наблюдатель найдет равным совсем другой величине, так как он пользуется, с нашей точки зрения, «сжатой» линейкой. Из-за эффекта сокращения возникает совсем другое соотношение:

(34.22)
что эквивалентно

(34.23)
Полезно вам самим получить это соотношение с помощью преобразования Лоренца.
Описанный выше эффект кажущегося изменения направления луча называется аберрацией и обнаружен на опыте. Казалось бы, как он может проявиться? Ведь никто не знает, где на самом деле расположена звезда. Пусть мы действительно смотрим на звезду в неправильном, кажущемся направлении, откуда нам известно, что оно неправильное? Известно; потому, что Земля обращается вокруг Солнца. Сегодня мы устанавливаем телескоп под одним углом, а через шесть месяцев мы должны его уже повернуть. Вот откуда мы знаем о существовании этого эффекта.
§ 9. Импульс световой волны
Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о магнитном поле световой волны. Обычно эффекты, связанные с магнитным полем, очень малы, однако есть один интересный и важный эффект, возникающий под влиянием магнитного поля. Пусть имеется луч света, посылаемый каким-то источником, который действует на заряд и заставляет его колебаться вверх и вниз. Предположим, что электрическое поле направлено вдоль оси х; тогда колебания заряда будут происходить тоже вдоль оси х: положение заряда дается значением х, а скорость заряда есть v (фиг. 34.13).
Магнитное поле направлено перпендикулярно электрическому. Электрическое поле, воздействуя на заряд, заставляет его раскачиваться вверх и вниз, а как действует магнитное поле? Магнитное поле действует только на движущийся заряд (пусть это будет, например, электрон); но электрон действительно движется, ведь он разгоняется электрическим полем, следовательно, оба поля действуют совместно. Двигаясь вверх и вниз с некоторой скоростью, электрон испытывает действие силы, равной по величине произведению Bvq , а каково направление

Фиг. 34.13. Движущийся под действием электрического поля заряд, на который со стороны магнитного поля действует сила, направленная по световому лучу.
этой силы? Направление силы совпадает с направлением распространения, света. Следовательно, падающий на заряд луч света заставляет его колебаться и, кроме того, тянет его с некоторой силой в направлении движения световой волны. Это явление носит название давления электромагнитных волн, или светового давления.
Определим величину светового давления. Она, очевидно, равна F = qvB или, поскольку заряд и поле осциллируют, равна среднему по времени от F , т. е. . Согласно (34.2), напряженность магнитного поля равна напряженности электрического поля, деленной на с, так что мы должны найти среднее от произведения электрического поля, скорости и заряда, деленного на с: < F > = q < vE >/ c . С другой стороны, произведение заряда q на поле Е есть сила, действующая на заряд со стороны электрического поля, а произведение силы на скорость есть работа в единицу времени dW / dt , совершаемая над зарядом!

Следовательно, сила («толкающий импульс»), сообщаемая заряду за 1 сек, равна поглощаемой энергии света за 1 сек, деленной на с! Этот закон носит общий характер, поскольку нам не надо было знать силу осциллятора, а также взаимное уничтожение действия разных зарядов. В каждом случае, когда происходит поглощение света, возникает давление. Импульс, сообщаемый светом, всегда равен поглощаемой энергии, деленной на с:
(34.24),
Мы уже знаем, что свет переносит с собой энергию. Теперь мы приходим к выводу, что свет несет также и импульс и, кроме того, импульс световой волны всегда равен энергии, деленной на с.
И наоборот, при испускании света источник испытывает отдачу. Если атом излучает энергию W в некотором направлении, возникает импульс отдачи р = W/c . Пучок света, падающий по нормали к зеркалу, при отражении сообщает зеркалу в два раза большую силу.
Читать дальше