Feynmann - Feynmann 3a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 3a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 3a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 3a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 3a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 3a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(34.13)

Для света мы знаем что k 0 w 0c Следовательно в рассматриваемом примере - фото 45

Для света мы знаем, что k 0= w 0/c. Следовательно, в рас­сматриваемом примере искомое соотношение имеет вид

(34.14)

и, казалось бы, не похоже на (34.12)!

Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны. Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.

Раз уж мы начали говорить о теории относительности приведем еще и третий - фото 46

Раз уж мы начали говорить о теории относительности, при­ведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли, каким способом получен результат!) В теории от­носительности имеется связь между положением в пространстве и временем, определяемым одним наблюдателем, и положением и временем, определяемым другим наблюдателем, движущимся относительно первого. Мы уже выписывали эти соотношения (гл. 16). Они представляют собой преобразования Лоренца, прямые и обратные:

(34.15)

Для неподвижного наблюдателя волна имеет вид coscot kx все гребни впадины - фото 47

Для неподвижного наблюдателя волна имеет вид cos(cot- kx ); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю, любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только напи­сать ее в системе отсчета движущегося наблюдателя:

Произведя перегруппировку членов получим 3416 Мы снова получим волну в - фото 48

Произведя перегруппировку членов, получим

(34.16)

Мы снова получим волну в виде косинуса с частотой w в качестве коэффициента - фото 49

Мы снова получим волну в виде косинуса с частотой w' в ка­честве коэффициента при t' и некоторой другой константой k' — коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким об­разом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами

(34.17)

3418 Легко видеть что 3417 совпадает с формулой 3413 полученной - фото 50

(34.18)

Легко видеть, что (34.17) совпадает с формулой (34.13), полу­ченной нами на основании чисто физических рассуждений.

§ 7. Четырехвектор ( w , k )

Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представ­ляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоя­нием, а частота — скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с пре­образованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с 2, то новое w' сопоставляется с t', a k' — с координатой х'/с 2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координа­ты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.

Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат.

Фиг 3411 Плоская волна движущаяся под углом Какой вид имеет формула - фото 51

Фиг. 34.11. Плоская волна, движущаяся под углом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 3a»

Представляем Вашему вниманию похожие книги на «Feynmann 3a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 3a»

Обсуждение, отзывы о книге «Feynmann 3a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x