Feynmann - Feynmann 3a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 3a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 3a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 3a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 3a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 3a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения вол­ны) — проекция вектора положения на направление движе­ния. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-е k, где e k— единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-e k), проекции расстояния на направление движе­ния. Следовательно, наша волна описывается формулой cos(wt-ke k·r).

Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2p/l, а направление совпадает с направлением распространения волны

Feynmann 3a - изображение 52

(34.19)

Благодаря введению этого вектора волна приобретает вид cos(wt-k·r), или cos(wt-k xx-k yy-k zz). Выясним смысл про­екций k, например k x. Очевидно, k xесть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла a между осью х и направле­нием движения истинной волны:

Feynmann 3a - изображение 53

(34.20)

Следовательно, скорость изменения фазы, обратно пропорцио­нальная X х, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и k x, равный модулю k, умноженному на косинус угла между k и осью х!

Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, k x, k y, k zпреобразуются в теории относительности как четырехвектор, причем со соответствует времени, a k x, ky, k zсоответствуют х, у и z и компонентам четырехвектора.

Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно соста­вить релятивистское штрихованное произведение. Взяв вектор положения x m(где m, нумерует четыре компоненты — время и три пространственные) и волновой вектор k m(где и. снова про­бегает четыре значения), образуем штрихованное произведе­ние х mи k m, записываемое в виде S'k mх m. Это произведение есть инвариант, не зависящий от выбора системы коор­динат. Согласно определению штрихованного произведения,

можно записать S'k mх m. следующем виде:

3421 Поскольку k mесть четырехвектор то как мы уже знаем Sk mx mесть - фото 54

(34.21)

Поскольку k mесть четырехвектор, то, как мы уже знаем, Sk mx mесть инвариант по отношению к преобразованиям Лорен­ца. Под знак косинуса в нашей формуле для плоской волны вхо­дит именно это произведение, и оно обязано быть инвариантом от­носительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат.

§ 8. Аберрация

При выводе формул 3417 и 3418 мы взяли простой пример когда k лежит в - фото 55

При выводе формул (34.17) и (34.18) мы взяли простой при­мер, когда k лежит в направлении движения системы коорди­нат; но мы можем обобщить теперь эти формулы на другие возможные случаи. Пусть источник посылает луч света в определенном направлении; это направление фиксируется неподвижным наблюдателем, а мы движемся, скажем, по по­верхности Земли в горизонтальном направлении (фиг. 34.12,а). В каком направлении падает луч света с нашей точки зре­ния? Можно получить ответ, записав четыре компоненты kм и совершив преобразования Лоренца. Но можно воспользо­ваться и следующим рассуждением: чтобы увидеть луч, следует наш телескоп повернуть на некоторый угол (фиг. 34.12, б). Почему? Потому что свет падает сверху со скоростью с, а мы движемся горизонтально со скоростью у, и свет пройдет «пря­мо» через телескоп, если последний наклонить на некоторый угол. Легко понять, что расстояние по горизонтали равно vt, а по вертикали ct, и, обозначив угол наклона через q', мы получим tgq'=v/c. Замечательно! В самом деле, замеча­тельно, если бы не одна маленькая деталь: q' не есть тот угол, под которым надо установить телескоп по отношению к поверх ности Земли, потому что наш анализ проводился с точки зре­ния неподвижного наблюдателя.

Фиг, 34.12. Удаленный источник света S .

анаблюдаемый через неподвижный телескоп; б — наблюдаемый через теле­скоп, движущийся в боковом направле­нии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 3a»

Представляем Вашему вниманию похожие книги на «Feynmann 3a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 3a»

Обсуждение, отзывы о книге «Feynmann 3a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x