Методы и правила сохранения целостности электрических сигналов в стандарте представлены без объяснений принципов их работы. Для правильного их применения в соответствии с реальной ситуацией требуется углубленное изучение.
Отечественная литература по данной тематике практически отсутствует. В различных ВУЗах нашей страны существуют разрозненные методические пособия и материалы, преподаваемые в рамках курса «Радиотехника». Некоторые доступные работы зарубежных авторов по данной тематике перечислены в разделе «Список рекомендуемой литературы и указателей», представленном в конце книги.
Отсутствие систематизированной информации по теме сохранения целостности сигналов и питания и невнимательность к данной теме руководителей проектов приводит к пренебрежению в использовании достаточно простых, но важных правил перед началом эскизного и в процессе рабочего проектирования печатных плат.
В конечном итоге серьезные недостатки в области электромагнитной совместимости да и просто в работоспособности проявляются только в процессе испытаний электрических макетов, что приводит к значительному увеличению сроков разработки и стоимости изделий.
В книге сделана попытка объяснить и систематизировать известные правила проектирования печатных плат.
Огромную помощь в понимании электрофизических процессов и «проверке знаний» дала возможность применения систем моделирования, проектирования и анализа печатных плат HyperLynx SI/PI компании Mentor (A Siemens Business) и Sigrity фирмы «Cadence Design Systems» как в предтопологическом, так и в посттопологическом режиме после разработки конструкций плат до момента их изготовления.
Именно хорошая сходимость результатов моделирования с результатами реальных измерений, накопленных за время практической деятельности, позволили представить в книге правила и методики повышения качества печатных плат без строгого математического обоснования.
Прочитав книгу вы познакомитесь с понятиями:
– электромагнитное поле и электромагнитная волна,
– цифровой сигнал,
– пассивные элементы и типовые звенья на их основе,
– линия передачи,
– волновое сопротивление линии передачи,
– однородность линии передачи,
– виды и причины неоднородностей линии передачи,
– методы согласования сопротивлений,
– собственная частота резонанса линии передачи,
– скорость распространения электромагнитной волны
в различных средах и типах линий передачи,
– матрица конденсаторов для снижения уровня шумов, "дребезга земли" и "эффекта хлопающих крыльев" в системе электропитания печатной платы.
Вы узнаете почему «нельзя» и в каких случаях «можно»:
– использовать длинные проводники,
– трассировать соседние проводники близко друг к другу
– располагать сигнальные проводники близко
к проводникам или полигонам земли и питания,
– изменять ширину проводника по ходу трассы,
– допускать разрывы полигона земли (опорного слоя)
под сигнальными проводниками или линиями передачи,
– допускать изгибы проводников,
– допускать создание «контуров» и «петель»,
– допускать установку переходных отверстий,
– допускать ветвление проводников.
Вы научитесь:
– применять методы согласования сопротивлений,
– организовывать однородные линии передачи,
– организовывать стек печатной платы,
– организовывать классы цепей,
– разрабатывать правила для отдельных классов цепей,
– оптимально размещать элементы на плате,
– применять электрическое и магнитное экранирование,
– применять методы улучшения электромагнитной совместимости разрабатываемых устройств,
– оценивать необходимость выравнивания проводников в шинах и дифференциальных парах,
– устанавливать «матрицы конденсаторов»,
– снижать плотности токов в проводниках и полигонах питания,
– обеспечивать низкий и равномерный импеданс цепей питания в требуемом диапазоне частот.
При разработке высокоскоростных печатных плат в них вместо обычных проводников должны быть организованы линии передачи.
Линия передачи – это конструкция, состоящая из сигнального проводника, опорного слоя и диэлектрика между ними.
Данная конструкция напоминает обычный конденсатор, способный накапливать между своими обкладками электрическую энергию. Поэтому внутри линии передачи сосредоточено переменное электрическое поле. Вокруг нее создается магнитное поле, порождающее электрическое поле с последующим формированием электромагнитной волны.
Читать дальше