Льюис Кэрролл - Льюис Кэрролл - Досуги математические и не только (ЛП)

Здесь есть возможность читать онлайн «Льюис Кэрролл - Льюис Кэрролл - Досуги математические и не только (ЛП)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Юмористическая проза, Юмористические стихи, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Льюис Кэрролл: Досуги математические и не только (ЛП): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Льюис Кэрролл: Досуги математические и не только (ЛП)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В сборник, составленный переводчиком, включены стихотворения и рассказы всемирно известного автора, а также примеры его арифметических штудий.  

Льюис Кэрролл: Досуги математические и не только (ЛП) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Льюис Кэрролл: Досуги математические и не только (ЛП)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

23

Тут какая-то странность. Из книги Роуза Болла Кэрроллу должно было быть известно хотя бы о ещё одном исключении — это 1981 год, дата Пасхи в котором не вполне соответствует расчётам способом Гаусса — Доджсона. На деле исключений больше, но и они подчиняются особому правилу. Чтобы пояснить читателю, в чём тут дело, мы должны разобрать природу «нового стиля» в отношении католической Пасхи в данной работе.

В то время как старый, юлианский, и новый, григорианский, календари предназначены для установления движения по семи дням недели определённых дат , то есть дней, обозначаемых цифрами от 1 до 28 (29), до 30 и до 31, а потому являются солнечными календарями, пасхальное исчисление связано с установлением фаз Луны, а потому должно основываться на каком-либо виде лунного календаря. Папской буллой «Inter gravissimas» («Среди важнейших»; традиционно названа по первым словам первого предложения) и был в 1582 году закреплён для католиков новый лунный календарь — наряду с новым солнечным, известным нам как григорианский. Реформа имела особую цель в отношении первого и второго календарей. Обновлением солнечного календаря, как известно, весеннее равноденствие навечно привязывалось к 21 (20) марта на деле ; ведь расчёт Пасхи по старому стилю тоже, только без всяких поправок, предполагает, будто весеннее равноденствие наступает 21 марта (ст. ст.), словно бы мы продолжаем жить в эпоху Никейского собора, длящуюся вневременно. (Почему же подобная календарная реформа оказалась для православной церкви неактуальной? Дело в том, что православный литургический календарь — это, строго говоря, совсем не юлианский солнечный и даже не лунный календарь, но счёт времени седмицами по Пасхе ). Новый же лунный календарь призван был закрепить столь же неподвижно (в собственных календарных рамках) первое весеннее полнолуние. Таким образом, григорианская реформа, являющаяся на деле реформой пасхалии, а новый гражданский календарь имеющая как бы побочным продуктом, задала составную, лунно-солнечную природу выражения «Пасха по новому стилю».

Когда труды математиков увенчались успехом, эту реформу, то есть переход к пасхалии нового стиля, оказалось возможным осуществить на практике изящнейшим способом — через введение в юлианскую пасхалию четырёх поправок: двух солнечных, одной лунной и одной чисто математической. Две солнечные поправки общеизвестны: это изъятие, с ненарушенным порядком следования дней недели , десяти календарных дней в октябре 1582 года и солнечное уравнение (т. е. выравнивание календаря по солнцу уточнённой системой високосов , при которой за каждые 400 лет вставочный день троекратно опускается, см. Доджсоново указание в конце статьи «Найти день недели для любой заданной даты»); эти поправки и отличают собственно григорианский календарь от юлианского. Третья поправка, не нашедшая отражения в григорианском календаре из-за его солнечной природы, — это так называемое лунное уравнение (выравнивание по луне; им элиминируются 0,0613 суток, отличающих 19 юлианских лет от 235 синодических месяцев, чем устраняется отставание церковных новолуний от астрономических на сутки за 310 лет). В формулах Гаусса все эти три поправки заключены в величине m , отчего она и отличается от постоянного значения 15 для юлианского календаря, являясь расчётной.

Для того, чтобы разъяснить последнюю интересующую нас здесь поправку, коснёмся структуры реформированного лунного календаря. Реформаторы выстроили постоянный календарь девятнадцатилетнего цикла, когда месяцы , т. е. промежутки времени от одного новолуния до другого, получают, начиная от первого новолуния первого года цикла, поочередно по 30 и 29 дней (ведь на деле этот промежуток для нашего времени выражается в средних солнечных сутках дробным числом 29,5305882); в годы, содержащие 13 новолуний, после тринадцатого новолуния идёт месяц в 30 дней, последний месяц 19-го года имеет 29 дней, а февраль постоянно имеет 28 дней, и на один день увеличивается в високосных годах тот лунный месяц, на который приходится, в соответствии с системой високосов, вставное 25 февраля. Тогда через девятнадцать юлианских лет, или 253 месяцев, новолуния приходятся на те же числа (см., однако, выше замечание о лунной поправке); месяц, в котором наступает новый год, всегда содержит 30 дней и четвёртый месяц года тоже содержит 30 дней, если третье новолуние наступает до 21 марта. При этом вынуждены были сделать два исключения: если четвёртое новолуние приходится на 6 апреля (а полнолуние тогда, по церковным предписаниям наступающее через 13 суток, приходится на 19-е), то оно переносится на 5-е, а если ему случится быть 5-го (полнолуние 18-го), и при этом, в наших обозначениях, величина c + 1 (так называемое золотое число), больше 11, то оно переносится на 4-е.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Льюис Кэрролл: Досуги математические и не только (ЛП)»

Представляем Вашему вниманию похожие книги на «Льюис Кэрролл: Досуги математические и не только (ЛП)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Льюис Кэрролл: Досуги математические и не только (ЛП)»

Обсуждение, отзывы о книге «Льюис Кэрролл: Досуги математические и не только (ЛП)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x