Однако когда измерения проводят ученые, актуарии [9] Эксперты-статистики страховых учреждений. — Примеч. редактора.
или статистики, они, похоже, пользуются де-факто совершенно иным определением. Каждый из этих специалистов знает, что в его области термины часто имеют иные значения, чем вкладывают в них широкие массы населения. И у экспертов понятие «измерение» не вызывает особых затруднений. А объясняется это тем, что в своих сферах деятельности они пользуются специальной терминологией, выходящей за рамки односложных толкований, а все ее определения являются элементами общей теоретической схемы. В физике сила тяжести — это не просто статья из специального словаря, но параметр конкретных уравнений, связывающих ее с такими понятиями, как масса, расстояние, а также определяющих ее влияние на пространство и время. Поэтому, желая истолковать понятие «измерение» с такой же точностью, мы должны знать кое-что о той теоретической схеме, элементом которой оно является. Без этого мы в нем не разберемся.
ОПРЕДЕЛЕНИЕ ИЗМЕРЕНИЯ
Измерение— это совокупность снижающих неопределенность наблюдений, результат которых выражается некой величиной.
Для всех практических целей научное сообщество рассматривает измерение как совокупность снижающих неопределенность наблюдений, результат которых выражается некой величиной. Таким образом, измерение — это не только полное устранение, но и частичное сокращение неопределенности. Даже явно не декларируя данную идею, ученые используют методы, оставляющие сомнения в том, что под измерением они подразумевают именно это. Факт присутствия ошибки, избежать которой полностью не удастся, при том что полученный результат все равно станет шагом вперед по сравнению с прежними представлениями, — ключевая идея проведения экспериментов, опросов и прочих научных измерений.
Фактические различия между таким толкованием измерения и его наиболее распространенными определениями колоссальны. Истинное измерение не только не обязано быть абсолютно точным, чтобы считаться таковым. Однако отсутствие информации о погрешности (подразумевающей строгость оценки величины) может служить признаком того, что эмпирические методы, такие как выборочное и экспериментальное исследования, не использовались (а значит, на самом деле это нельзя считать измерением вообще). Настоящие научные методы описывают результаты в определенном интервале значений, например говорят, что «использование нового сорта кукурузы позволило повысить среднюю урожайность кукурузных ферм на 10–18 % (95-процентный CI)». Точные значения без указания погрешности могли бы быть рассчитаны «принятым способом» (как, например, оценивались активы Enron). Однако если они не представляют собой 100-процентный итог полного подсчета (как мы пересчитываем мелочь в кармане), их не всегда можно рассматривать как основанные на эмпирическом наблюдении.
Для многих читателей такое понимание сущности измерения может оказаться в новинку, но есть веские математические основания, как и практические причины трактовать данный термин именно таким образом. По крайней мере, мы можем сказать, что измерение — это способ получения информации, к тому же наука уже дала строгую теоретическую концепцию информации. Математическую теорию информации создал в 1940-х годах Клод Шеннон — американский инженер-электротехник, математик и разносторонний ученый, интересовавшийся робототехникой и компьютерными шахматными программами.
В 1948 г. Шеннон опубликовал работу под названием «Математическая теория связи» («A Mathematical Theory of Communication»), заложившую основы теории информации и измерений в целом. Нынешнее поколение знает о Шенноне немного, но на самом деле его заслуги переоценить невозможно. На теории информации основаны все современные теории обработки сигналов и технологии систем электронной связи, в том числе и производство всех когда-либо собранных микропроцессоров.
Шеннон предложил математическое определение информации как снижения неопределенности в сигнале, которое он обсуждает в терминах энтропии, сокращаемой данным сигналом. Согласно Шеннону, получателя информации можно описать как объект, находившийся ранее в состоянии неопределенности. Это означает, что получатель уже обладал ранее какими-то сведениями, а затем получил новую информацию, которая устранила существовавшую неопределенность, но не обязательно полностью. Прежний уровень знаний, или состояние неопределенности, может быть использован, например, для расчета объема информации, который можно передать сигналом, минимальной величины сигнала для поправки на шум и оценки максимально возможного сжатия данных.
Читать дальше