Anil K. Chopra - Earthquake Engineering for Concrete Dams

Здесь есть возможность читать онлайн «Anil K. Chopra - Earthquake Engineering for Concrete Dams» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Earthquake Engineering for Concrete Dams: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Earthquake Engineering for Concrete Dams»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems.
offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. 
This important book:
Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers,
offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.

Earthquake Engineering for Concrete Dams — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Earthquake Engineering for Concrete Dams», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

If the reservoir bottom is non‐absorptive, i.e. α = 1, the hydrodynamic forces due to both ground motion components are unbounded at the natural vibration frequencies картинка 115of the impounded water. The hydrodynamic force due to vertical ground motion is in‐phase or opposite‐phase relative to the ground acceleration for all excitation frequencies. The hydrodynamic force due to horizontal ground motion is of opposite‐phase relative to the ground acceleration for excitation frequencies less than the first natural vibration frequency картинка 116, but a 90°‐out‐of‐phase component exists for higher excitation frequencies.

As mentioned earlier, the hydrodynamic pressure, Eq. (2.3.12a), and hence the total force on a rigid dam due to horizontal ground motion have been expressed as an infinite series wherein each term represents the contribution of a natural vibration mode of the impounded water. If the reservoir bottom is non‐absorptive, i.e. α = 1, the contribution of the n th mode is real‐valued with opposite‐phase relative to the ground acceleration for excitation frequencies lower than картинка 117, the n th natural vibration frequency; but is imaginary‐valued, i.e. 90°‐out‐of‐phase relative to the ground acceleration, for excitation frequencies higher than картинка 118, and is unbounded when the excitation frequency is equal to картинка 119. For excitation frequencies higher than картинка 120the pressure wave associated with the n th mode propagates in the upstream direction of the infinitely long fluid domain resulting in radiation of energy, As the excitation frequency increases past картинка 121, the hydrodynamic force contribution of the n th mode changes from a pressure function decaying exponentially in the upstream direction to one propagating in the upstream direction, thus reducing the real component of картинка 122and increasing its imaginary component ( Figure 2.3.2). With increasing excitation frequency, a larger number of modes are associated with the propagating pressure waves, leading to increased energy radiation and hence smaller hydrodynamic force ( Figure 2.3.2a) – except for the local resonances at these unbounded resonances are unrealistic artifacts of a nonabsorptive - фото 123; these unbounded resonances are unrealistic artifacts of a non‐absorptive boundary at the reservoir bottom.

Figure 232Hydrodynamic force on rigid dam due to horizontal ground - фото 124

Figure 2.3.2Hydrodynamic force on rigid dam due to horizontal ground acceleration: (a) absolute value; (b) real component; and (c) imaginary component.

Figure 233Hydrodynamic force on rigid dam due to vertical ground - фото 125

Figure 2.3.3Hydrodynamic force on rigid dam due to vertical ground acceleration: (a) absolute value; (b) real component; and (c) imaginary component.

For an absorptive reservoir bottom, the frequency‐dependent eigenvalues μ n( ω ) of the impounded water are complex‐valued for all excitation frequencies. Consequently, the contribution of the n th natural vibration mode of the impounded water to the hydrodynamic force due to horizontal ground motion is complex‐valued for all excitation frequencies; wherein the imaginary (or 90°‐out‐of‐phase) component arises from the radiation of energy due to propagation of pressure waves in the upstream direction and their refraction into the reservoir bottom. This implies that if the reservoir bottom is absorptive, the hydrodynamic force contains a 90°‐out‐of‐phase component even for excitation frequencies lower than картинка 126( Figure 2.3.2c). Because of the additional energy loss resulting from wave absorption at the reservoir bottom, the hydrodynamic force is bounded for all excitation frequencies, the fundamental resonant peak is reduced, and the higher resonant peaks are virtually eliminated. However, the additional energy absorption into the reservoir bottom has little influence on the natural frequencies of the impounded water.

The hydrodynamic pressure due to vertical ground motion is independent of the upstream coordinate (Chopra 1967) and the pressure waves do not propagate in the upstream direction, resulting in a truly undamped system if the reservoir bottom is non‐absorptive. The hydrodynamic pressure is real‐valued, in‐phase, or opposite‐phase relative to the ground acceleration, for all excitation frequencies. Energy loss associated with refraction of pressure waves into a flexible bottom leads to an imaginary component for all excitation frequencies. This energy loss reduces the response at all frequencies and the resonant responses are now bounded.

If water compressibility is neglected, the frequency response functions for hydrodynamic pressure on a rigid dam, given by Eqs. (2.3.20)and (2.3.21), are real‐valued and independent of the excitation frequency ( Figures 2.3.2and 2.3.3). The hydrodynamic force due to vertical ground motion is equal to the hydrostatic force ( Figure 2.3.3), and in‐phase with the ground acceleration; whereas the hydrodynamic force due to horizontal ground motion is slightly larger than the hydrostatic force ( Figure 2.3.2), and has opposite‐phase relative to the ground acceleration.

2.3.4 Westergaard's Results and Added Mass Analogy

In 1933 Westergaard derived an equation for the hydrodynamic pressure on the upstream face of a rigid dam due to time‐harmonic horizontal ground motion, a result that for several decades profoundly influenced the treatment of hydrodynamic effects in dam analysis. The range of validity of this result will be identified in this section. His result for hydrodynamic pressure on the upstream face of the dam due to Earthquake Engineering for Concrete Dams - изображение 127, expressed in the Cartesian coordinate system and notation adopted herein, is

(2.3.22) Earthquake Engineering for Concrete Dams - изображение 128

To evaluate this classical result, we substitute Eq. (2.3.18)in Eq. (2.3.7), and separate the real part to obtain the hydrodynamic pressure due to the excitation Earthquake Engineering for Concrete Dams - изображение 129:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Earthquake Engineering for Concrete Dams»

Представляем Вашему вниманию похожие книги на «Earthquake Engineering for Concrete Dams» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Earthquake Engineering for Concrete Dams»

Обсуждение, отзывы о книге «Earthquake Engineering for Concrete Dams» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x