Bhisham C. Gupta - Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP

Здесь есть возможность читать онлайн «Bhisham C. Gupta - Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces basic concepts in probability and statistics to data science students, as well as engineers and scientists Aimed at undergraduate/graduate-level engineering and natural science students, this timely, fully updated edition of a popular book on statistics and probability shows how real-world problems can be solved using statistical concepts. It removes Excel exhibits and replaces them with R software throughout, and updates both MINITAB and JMP software instructions and content. A new chapter discussing data mining—including big data, classification, machine learning, and visualization—is featured. Another new chapter covers cluster analysis methodologies in hierarchical, nonhierarchical, and model based clustering. The book also offers a chapter on Response Surfaces that previously appeared on the book’s companion website.
Statistics and Probability with Applications for Engineers and Scientists using MINITAB, R and JMP, Second Edition Features two new chapters—one on Data Mining and another on Cluster Analysis Now contains R exhibits including code, graphical display, and some results MINITAB and JMP have been updated to their latest versions Emphasizes the p-value approach and includes related practical interpretations Offers a more applied statistical focus, and features modified examples to better exhibit statistical concepts Supplemented with an Instructor's-only solutions manual on a book’s companion website 
is an excellent text for graduate level data science students, and engineers and scientists. It is also an ideal introduction to applied statistics and probability for undergraduate students in engineering and the natural sciences.

Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.5.6) Further the sample variance denoted by is defined as 257 - фото 261

Further the sample variance , denoted by is defined as 257 For computational purposes we give below the - фото 262, is defined as

(2.5.7) For computational purposes we give below the simplified forms for the - фото 263

For computational purposes, we give below the simplified forms for the population variance and the sample variances.

(2.5.8) 259 Note that one difficulty in using the variance as the measure of - фото 264

(2.5.9) Note that one difficulty in using the variance as the measure of dispersion is - фото 265

Note that one difficulty in using the variance as the measure of dispersion is that the units for measuring the variance are not the same as those for data values. Rather, variance is expressed as a square of the units used for the data values. For example, if the data values are dollar amounts, then the variance will be expressed in squared dollars. Therefore, for application purposes, we define another measure of dispersion, called the standard deviation , that is directly related to the variance. We note that the standard deviation is measured in the same units as used for the data values (see ( 2.5.10) and ( 2.5.11) given below).

Standard Deviation

A standard deviation is obtained by taking the positive square root (with positive sign) of the variance. The population standard deviation and the sample standard deviation are defined as follows 2510 - фото 266and the sample standard deviation are defined as follows 2510 2511 E - фото 267are defined as follows:

(2.5.10) 2511 Example 2510Lengths of certain chips The following data give - фото 268

(2.5.11) Example 2510Lengths of certain chips The following data give the length in - фото 269

Example 2.5.10(Lengths of certain chips) The following data give the length (in millimeters) of material chips removed during a machining operation:

4, 2, 5, 1, 3, 6, 2, 4, 3, 5

Determine the variance and the standard deviation for these data.

Solution:There are three simple steps to calculate the variance of any data set.

1 Step 1. Calculate , the sum of all the data values, that is,

2 Step 2. Calculate , the sum of squares of all the observations, that is,

3 Step 3. Since the sample size is , by inserting the values and , calculated in Step 1 and Step 2 in formula ( 2.5.9), the sample variance is given by

The standard deviation is obtained by taking the square root of the variance, that is

Statistics and Probability with Applications for Engineers and Scientists Using MINITAB R and JMP - изображение 270

Note : It is important to remember the value of картинка 271, and therefore of картинка 272, is always greater than zero, except when all the data values are equal, in which case картинка 273.

Empirical Rule

We now illustrate how the standard deviation of a data set helps us measure the variability of the data. If the data have a distribution that is approximately bell‐shaped, the following rule, known as the empirical rule , can be used to compute the percentage of data that will fall within Statistics and Probability with Applications for Engineers and Scientists Using MINITAB R and JMP - изображение 274standard deviations from the mean ( Statistics and Probability with Applications for Engineers and Scientists Using MINITAB R and JMP - изображение 275). For the case where the data set is the set of population values, the empirical rule may be stated as follows:

1 About 68% of the data will fall within one standard deviation of the mean, that is, between and .

2 About 95% of the data will fall within two standard deviations of the mean, that is, between and .

3 About 99.7% of the data will fall within three standard deviations of the mean, that is, between and .

Figure 2.5.3illustrates these features of the empirical rule.

Figure 253Application of the empirical rule For the case where μ and σ are - фото 276

Figure 2.5.3Application of the empirical rule.

For the case where μ and σ are unknown, the empirical rule is of the same form, but картинка 277is replaced by картинка 278and картинка 279replaced by картинка 280.

Example 2.5.11(Soft drinks) A soft‐drink filling machine is used to fill 16‐oz soft‐drink bottles. The amount of beverage slightly varies from bottle to bottle, and it is assumed that the actual amount of beverage in the bottle forms a bell‐shaped distribution with a mean 15.8 oz and standard deviation 0.15 oz. Use the empirical rule to find what percentage of bottles contain between 15.5 and 16.1 oz of beverage.

Solution:From the information provided to us in this problem, we have картинка 281oz and oz We are interested in knowing the percentage of bottles that will contain - фото 282oz. We are interested in knowing the percentage of bottles that will contain between 15.5 and 16.1 oz of beverage. We can see that Then comparing Figure 254with Figure 253 it seems that approximately 95 - фото 283. Then comparing Figure 2.5.4with Figure 2.5.3, it seems that approximately 95% of the bottles contain between 15.5 and 16.1 oz of the beverage, since 15.5 and 16.1 are two standard deviations away from the mean.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP»

Представляем Вашему вниманию похожие книги на «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP»

Обсуждение, отзывы о книге «Statistics and Probability with Applications for Engineers and Scientists Using MINITAB, R and JMP» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x