Dennis M. Sullivan - Electromagnetic Simulation Using the FDTD Method with Python

Здесь есть возможность читать онлайн «Dennis M. Sullivan - Electromagnetic Simulation Using the FDTD Method with Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Electromagnetic Simulation Using the FDTD Method with Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Electromagnetic Simulation Using the FDTD Method with Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. 
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition Electromagnetic Simulation Using the FDTD Method with Python Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform Provides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD,
will also benefit scientists and engineers interested in the subject.

Electromagnetic Simulation Using the FDTD Method with Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Electromagnetic Simulation Using the FDTD Method with Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2 Keep increasing your incident frequency from 700 MHz upward at intervals of 300 MHz. What happens?

3 A wave packet, a sinusoidal function in a Gaussian envelope, is a type of propagating wave function that is of great interest in areas such as optics. Modify your program to simulate a wave packet.

1.6 DETERMINING CELL SIZE

Choosing the cell size to be used in an FDTD formulation is similar to any approximation procedure: Enough sampling points must be taken to ensure that an adequate representation is made. The number of points per wavelength is dependent on many factors (3, 4). However, a good rule of thumb is 10 points per wavelength. Experience has shown this to be adequate, with inaccuracies appearing as soon as the sampling drops below this rate.

Naturally, we must use a worst‐case scenario. In general, this will involve looking at the highest frequencies we are simulating and determining the corresponding wavelength. For instance, suppose we are running simulations with 400 MHz. In free space, EM energy will propagate at the wavelength

(1.18) If we were only simulating free space we would choose However if we are - фото 41

If we were only simulating free space, we would choose

However if we are simulating EM propagation in biological tissues for - фото 42

However, if we are simulating EM propagation in biological tissues, for instance, we must look at the wavelength in the tissue with the highest dielectric constant, because this will have the corresponding shortest wavelength. For instance, muscle has a relative dielectric constant of about 50 at 400 MHz, so

In this case we would probably select a cell size of 1 cm PROBLEM SET 16 1 - фото 43

In this case, we would probably select a cell size of 1 cm.

PROBLEM SET 1.6

1 Simulate a 3 GHz sine wave impinging on a material with a dielectric constant of εr = 20.

1.7 PROPAGATION IN A LOSSY DIELECTRIC MEDIUM

So far, we have simulated EM propagation in free space or in simple media that are specified by the relative dielectric constant ε r. However, there are many media that also have a loss term specified by the conductivity. This loss term results in the attenuation of the propagating energy.

Once more we will start with the time‐dependent Maxwell’s curl equations, but we will write them in a more general form, which allows us to simulate propagation in media that have conductivity:

(1.19a) 119b J the current density can also be written as - фото 44

(1.19b) J the current density can also be written as where σ is the conductivity - фото 45

J, the current density, can also be written as

where σ is the conductivity Putting this into Eq 119aand dividing through - фото 46

where σ is the conductivity. Putting this into Eq. (1.19a)and dividing through by the dielectric constant we get

We now revert to our simple onedimensional equation and make the change of - фото 47

We now revert to our simple one‐dimensional equation:

and make the change of variable in Eq 15 which gives 120a 120b - фото 48

and make the change of variable in Eq. (1.5), which gives

(1.20a) 120b Next take the finitedifference approximation for both the temporal - фото 49

(1.20b) Next take the finitedifference approximation for both the temporal and - фото 50

Next, take the finite‐difference approximation for both the temporal and spatial derivatives similar to Eq. (1.3a):

(1.21) Notice that the last term in Eq 120ais approximated as the average across - фото 51

Notice that the last term in Eq. (1.20a)is approximated as the average across two time steps in Eq. (1.21). The tildes were dropped from Eq. (1.21)for simplicity. From Eq. (1.8),

Electromagnetic Simulation Using the FDTD Method with Python - изображение 52

so Eq. (1.21)becomes

or Figure 16 Simulation of a propagatin - фото 53

or

Figure 16 Simulation of a propagating sinusoidal wave striking a lossy - фото 54 Figure 16 Simulation of a propagating sinusoidal wave striking a lossy - фото 55

Figure 1.6 Simulation of a propagating sinusoidal wave striking a lossy dielectric material with a dielectric constant of 4 and a conductivity of 0.04 (S/m). The source is 700 MHz and originates at cell number 5.

From these we can get the computer equations:

(1.22a) 122b where 123a 123b - фото 56

(1.22b) where 123a 123b 123c - фото 57

where

(1.23a) 123b 123c The program fd1d15py simula - фото 58

(1.23b) 123c The program fd1d15py simulates a sinusoidal wave hitting a lossy - фото 59

(1.23c) The program fd1d15py simulates a sinusoidal wave hitting a lossy medium that - фото 60

The program fd1d_1_5.py simulates a sinusoidal wave hitting a lossy medium that has a dielectric constant of 4 and a conductivity of 0.04. The pulse is generated at the left side and propagates to the right ( Fig. 1.6). Notice that the waveform in the medium is absorbed before it hits the boundary, so we do not have to worry about absorbing boundary conditions.

PROBLEM SET 1.7

1 Run program fd1d_1_5.py to simulate a complex dielectric material. Duplicate the results of Fig. 1.6.

2 Verify that your calculation of the sine wave in the lossy dielectric is correct: That is, it is the correct amplitude going into the slab, and then it attenuates at the proper rate ( Appendix 1.A).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Electromagnetic Simulation Using the FDTD Method with Python»

Представляем Вашему вниманию похожие книги на «Electromagnetic Simulation Using the FDTD Method with Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Electromagnetic Simulation Using the FDTD Method with Python»

Обсуждение, отзывы о книге «Electromagnetic Simulation Using the FDTD Method with Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x