Dennis M. Sullivan - Electromagnetic Simulation Using the FDTD Method with Python

Здесь есть возможность читать онлайн «Dennis M. Sullivan - Electromagnetic Simulation Using the FDTD Method with Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Electromagnetic Simulation Using the FDTD Method with Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Electromagnetic Simulation Using the FDTD Method with Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. 
Electromagnetic Simulation Using the FDTD Method with Python, Third Edition Electromagnetic Simulation Using the FDTD Method with Python Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform Provides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD,
will also benefit scientists and engineers interested in the subject.

Electromagnetic Simulation Using the FDTD Method with Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Electromagnetic Simulation Using the FDTD Method with Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.4a) 14b Notice that the calculations are interleaved in space and time In Eq - фото 9

(1.4b) Notice that the calculations are interleaved in space and time In Eq 14a - фото 10

Notice that the calculations are interleaved in space and time. In Eq. (1.4a), for example, the new value of E xis calculated from the previous value of E xand the most recent values of H y.

Figure 11 Interleaving of the E and H fields in space and time in the FDTD - фото 11

Figure 1.1 Interleaving of the E and H fields in space and time in the FDTD formulation. To calculate H y, for instance, the neighboring values of E xat k and k + 1 are needed. Similarly, to calculate E x, the values of H yat k + 1/2 and картинка 12are needed.

This is the fundamental paradigm of the FDTD method (1).

Equations (1.4a)and (1.4b)are very similar, but because ε 0and μ 0differ by several orders of magnitude, E xand H ywill differ by several orders of magnitude. This is circumvented by making the following change of variables (2):

(1.5) Electromagnetic Simulation Using the FDTD Method with Python - изображение 13

Substituting this into Eq. (1.4a)and (1.4b)gives

(1.6a) 16b Once the cell size Δ x is chosen then the time step Δ t is determined - фото 14

(1.6b) Electromagnetic Simulation Using the FDTD Method with Python - изображение 15

Once the cell size Δ x is chosen, then the time step Δ t is determined by

(1.7) Electromagnetic Simulation Using the FDTD Method with Python - изображение 16

where c 0is the speed of light in free space. (The reason for this will be explained in Section 1.2.) Therefore, remembering that ε 0 μ 0= 1/( c 0) 2,

(1.8) Rewriting Eq 16aand 16bin Python gives the following 19a 19b - фото 17

Rewriting Eq. (1.6a)and (1.6b)in Python gives the following:

(1.9a) 19b Note that the n n 12 or n 12 in the superscripts is gone - фото 18

(1.9b) Note that the n n 12 or n 12 in the superscripts is gone Time is - фото 19

Note that the n , n + 1/2, or n − 1/2 in the superscripts is gone. Time is implicit in the FDTD method. In Eq. (1.9a), the exon the right side of the equal sign is the previous value at n − 1/2, and the exon the left side is the new value n + 1/2, which is being calculated. Position, however, is explicit. The only difference is that k + 1/2 and k − 1/2 are rounded to k and k − 1 in order to specify a position in an array in the program.

The program fd1d_1_1.py at the end of this chapter is a simple one‐dimensional FDTD program. It generates a Gaussian pulse in the center of the problem space, and the pulse propagates away in both directions as seen in Fig. 1.2. The E xfield is positive in both directions, but the H yfield is negative in the negative direction. The following points are worth noting about the program:

1 The Ex and Hy values are calculated by separate loops, and they employ the interleaving described above.

2 After the Ex values are calculated, the source is calculated. This is done by simply specifying a value of Ex at the point k = kc and overriding what was previously calculated. This is referred to as a hard source because a specific value is imposed on the FDTD grid.

Figure 12 FDTD simulation of a pulse in free space after 100 time steps The - фото 20

Figure 1.2 FDTD simulation of a pulse in free space after 100 time steps. The pulse originated in the center and travels outward.

PROBLEM SET 1.1

1 Get the program fd1d_1_1.py running. What happens when the pulse hits the end of the array? Why?

2 Modify the program so it has two sources, one at kc ‐ 20 and one at kc + 20. (Notice that kc is the center of the problem space.) What happens when the pulses meet? Explain this from basic electromagnetic (EM) theory.

3 Instead of Ex as the source, use Hy at k = kc as the source. What difference does it make? Try a two‐point magnetic source at kc ‐ 1 and kc such that hy[kc ‐ 1] = ‐ hy[kc]. What does this look like? To what does it correspond physically?

1.2 STABILITY AND THE FDTD METHOD

Let us return to the discussion of how to determine the time step. An EM wave propagating in free space cannot go faster than the speed of light. To propagate a distance of one cell requires a minimum time of Δ t = Δ x / c 0. With a two‐dimensional simulation, we must allow for the propagation in the diagonal direction, which brings the requirement to Electromagnetic Simulation Using the FDTD Method with Python - изображение 21. Obviously, a three‐dimensional simulation requires Electromagnetic Simulation Using the FDTD Method with Python - изображение 22. This is summarized by the well‐known Courant Condition (3, 4):

(1.10) Electromagnetic Simulation Using the FDTD Method with Python - изображение 23

where n is the dimension of the simulation. Unless otherwise specified, throughout this book we will determine Δ t by

(1.11) Electromagnetic Simulation Using the FDTD Method with Python - изображение 24

This is not necessarily the best formula; we will use it for simplicity to avoid using square roots.

PROBLEM SET 1.2

1 In fd1d_1_1.py, go to the governing equations, Eq. (1.9a)and (1.9b), and change the factor 0.5 to 1.0. What happens? Change it to 1.1. Now what happens? Change it to 0.25 and see what happens.

1.3 THE ABSORBING BOUNDARY CONDITION IN ONE DIMENSION

Absorbing boundary conditions are necessary to keep outgoing E and H fields from being reflected back into the problem space. Normally, in calculating the E field, we need to know the surrounding H values. This is a fundamental assumption of the FDTD method. At the edge of the problem space we will not have the value of one side. However, we have an advantage because we know that the fields at the edge must be propagating outward. We will use this fact to estimate the value at the end by using the value next to it (5).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Electromagnetic Simulation Using the FDTD Method with Python»

Представляем Вашему вниманию похожие книги на «Electromagnetic Simulation Using the FDTD Method with Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Electromagnetic Simulation Using the FDTD Method with Python»

Обсуждение, отзывы о книге «Electromagnetic Simulation Using the FDTD Method with Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x