George Acquaah - Principles of Plant Genetics and Breeding

Здесь есть возможность читать онлайн «George Acquaah - Principles of Plant Genetics and Breeding» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Plant Genetics and Breeding: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Plant Genetics and Breeding»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The revised edition of the bestselling textbook, covering both classical and molecular plant breeding Principles of Plant Genetics and Breeding Now in its third edition, this essential textbook contains extensively revised content that reflects recent advances and current practices. Substantial updates have been made to its molecular genetics and breeding sections, including discussions of new breeding techniques such as zinc finger nuclease, oligonucleotide directed mutagenesis, RNA-dependent DNA methylation, reverse breeding, genome editing, and others. A new table enables efficient comparison of an expanded list of molecular markers, including Allozyme, RFLPs, RAPD, SSR, ISSR, DAMD, AFLP, SNPs and ESTs. Also, new and updated “Industry Highlights” sections provide examples of the practical application of plant breeding methods to real-world problems. This new edition:
Organizes topics to reflect the stages of an actual breeding project Incorporates the most recent technologies in the field, such as CRSPR genome edition and grafting on GM stock Includes numerous illustrations and end-of-chapter self-assessment questions, key references, suggested readings, and links to relevant websites Features a companion website containing additional artwork and instructor resources 
offers researchers and professionals an invaluable resource and remains the ideal textbook for advanced undergraduates and graduates in plant science, particularly those studying plant breeding, biotechnology, and genetics.

Principles of Plant Genetics and Breeding — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Plant Genetics and Breeding», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

After several backcrossing generations, homozygous BC nS 1resistant plants of these crosses were selected ( Figure B5.3). Since we have facilities for genome‐wide analysis, we genotyped all selected plants with AFLP markers to compare their genetic background with the recurrent parent MM. BC nS 1resistant plants that were genetically most similar to MM were maintained as NILs.

Releasing NILs to companies for production of resistant cultivars

These NILs harboring dominant Ol genes are valuable advanced breeding lines and have been used by seed companies for breeding tomato cultivars with resistance to tomato powdery mildew, which are now available on the market. The NILs for the Ol‐qtls are still in development via MAS.

References

1 Egashira, H., Ishihara, H., Takshina, T., and Imanishi, S. (2000). Genetic diversity of the ‘peruvianum‐complex’ (Lycopersicon peruvianum (L.) Mill. and L. chilense Dun.) revealed by RAPD analysis. Euphytica. 116: 23–31.

2 Huang, Y., Komoto, J., Konishi, K. et al. (2000). Mechanisms for auto‐inhibition and forced product release in glycine N‐methyltransferase: crystal structures of wild‐type, mutant R175K and S‐adenosylhomocysteine‐bound R175K enzymes. J Mol Biol 298 (1): 149–162.

3 Kiss, L., Cook, R.T.A., Saenz, G.S. et al. (2001). Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O. lycopersici, infecting tomato in different parts of the world. Mycological Research 105 (2001): 684–697.

4 Kiss, L. and Takamatsu, S. (2005). Cunnington Molecular identifications of Oidium neolycopersici as the causal agent of the recent tomato powdery mildew epidemics in the North America. Plant Disease (89): 491–496.

5 Paternotte, S.J. (1988). Occurrence and chemical control of powdery mildew (Oidium sp.) in tomatoes. Mededelingenvan de Faculteit Landbouwwetenschappen RijksuniversiteitGent (53/2b): 657–661.

6 Picken, A.J.F., Hurd, R.G., and Vince‐Prue, D. (1985). Lycopersicon esculentum. In: Handbook of flowering III (ed. A.H. Halevy), 330–346. Boca Raton: CRC Press.

7 Rick, C.M. (1986). Germplasm resources in the wild tomato species. Sci. Hort 200: 45–55.

8 Rick, C.M. (1988). Tomato‐like nightshades: affinities, auto‐ecology, and breeders opportunities. Economic Botany. 42: 145–154.

9 Taylor, I.B. (1986). Biosystematics of the tomato. In: The Tomato Crop ‐ A scientific Basis for Improvement (eds. J.G. Atherton and J. Rudich), 1–34. London: Chapman and Hall.

Repeated selfing has no genetic consequence in self‐pollinated species (no inbreeding depressionor loss of vigor following selfing). Similarly, self‐incompatibility does not occur. Because a self‐pollinated cultivar is generally one single genotype reproducing itself, breeding self‐pollinated species usually entails identifying one superior genotype (or a few) and multiplying it. Specific breeding methods commonly used for self‐pollinated species are pure line selection, and also pedigree breeding, bulk populations, and backcross breeding.

5.6 Genotype conversion programs

To facilitate breeding of certain major crops, projects have been undertaken by certain breeders to create breeding stock of male sterile lines that plant breeders can readily obtain. In barley, over 100 spring and winter wheat cultivars have been converted to male sterile lines by USDA researchers. In the case of CMS, transferring chromosomes into foreign cytoplasm is a method of creating CMS lines. This approach has been used to create male sterility in wheat and sorghum. In sorghum, kafir chromosomes were transferred into milo cytoplasm by pollinating milo with kafir, and backcrossing the product to kafir to recover all the kafir chromosomes as previously indicated.

5.7 Artificial pollination control techniques

As previously indicated, crossing is a major procedure employed in the transfer of genes from one parent to another in the breeding of sexual species. A critical aspect of crossing is pollination control to ensure that only the desired pollen is involved in the cross. In hybrid seed production, success depends on the presence of an efficient, reliable, practical, and economic pollination control system for large‐scale pollination. Pollination control may be accomplished in three general ways:

1 Mechanical controlThis approach entails manually removing anthers from bisexual flowers to prevent pollination, a technique called emasculation, removing one sexual part (e.g. detasselling in corn), or excluding unwanted pollen by covering the female part. These methods are time consuming, expensive, and tedious, limiting the number of plants that can be crossed. It should be mentioned that in crops such as corn, mechanical detasselling is widely used in the industry to produce hybrid seed.

2 Chemical controlA variety of chemicals called chemical hybridizing agents, or by other names (e.g. male gametocides, male sterilants, pollenocides, androcides) are used to temporally induce male sterility in some species. Examples of such chemicals include Dalapon®, Estrone®, Ethephon®, Hybrex®, and Generis®. The application of these agents induces male sterility in plants, thereby enforcing cross‐pollination. The effectiveness is variable among products.

3 Genetical controlCertain genes are known to impose constraints on sexual biology by incapacitating the sexual organ (as in male sterility) or inhibiting the union of normal gametes (as in self‐incompatibility). These genetic mechanisms will be discussed further.

5.8 What is allogamy?

Allogamyoccurs when fertilization of the flower of a plant is effected by pollen donated by a different plant within the same species. This is synonymous with ( cross‐pollinationor) cross‐fertilizationor out breeding, involving the actual fusion of gametes (sperm and ovum). An incomplete list of allogamous species is presented in Table 5.3.

Table 5.3Examples of predominantly cross‐pollinated species.

Common name Scientific name
Alfalfa Medicago sativa
Annual ryegrass Lolium multiflorum
Banana Musa spp.
Birdsfoot trefoil Lotus corniculatus
Cabbage Brassica oleracea
Carrot Daucus carota
Cassava Manihot esculentum
Cucumber Cucumis sativa
Fescue Festuca spp.
Kentucky bluegrass Poa pratense
Maize Zea mays
Muskmelon Cucumis melo
Onion Allium spp.
Potato Solanum tuberosum
Radish Raphanus sativus
Rye Secale cereale
Sugarbeet Beta vulgaris
Sunflower Helianthus annuus
Sweet potato Ipomoea batatus
Watermelon Citrullus lanatas

Though predominantly pollinated, some of these species may have another reproductive mechanism in breeding and crop cultural systems. For example, banana is vegetatively propagated (and not grown from seed) and so are cassava and sweet potato; cabbage and maize are produced as hybrids.

5.8.1 Mechanisms that favor allogamy

Allogamous species depend on agents of pollination, especially wind and insects, and hence tend to produce large amounts of pollen, and have large, bright‐colored fragrant flowers to attract insects. They commonly have taller stamens than carpels or use other mechanisms to better ensure the dispersal of pollen to other plant flowers. Other provisions that promote cross‐fertilization are mechanisms that control the timing of the receptiveness of the stigma and shedding of pollen and thereby prevent autogamy within the same flower. In protandry, the anthers release their pollen before the stigma of the same flower is receptive (protandrous flower). In protogyny, the stigma is receptive before the pollen is shed from the anthers of the same flower (protogynous flower). Several mechanisms occur in nature by which cross‐pollination is ensured, the most effective being dioecy, monoecy, dichogamy, and self‐incompatibility. Some mechanisms are stringent in enforcing cross‐pollination (e.g. dioecy), while others are less so (e.g. monoecy). These mechanisms are exploited by plant breeders during controlled pollination phase of their breeding programs, so that only desired pollen sources participate in siring the next plant generation.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Plant Genetics and Breeding»

Представляем Вашему вниманию похожие книги на «Principles of Plant Genetics and Breeding» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Plant Genetics and Breeding»

Обсуждение, отзывы о книге «Principles of Plant Genetics and Breeding» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x