..Figure 2.12 8×8 Baseline network showing one disjoint path for S-D node pa...Figure 2.13 8×8 Generalized-cube network showing one disjoint path for S-D...Figure 2.14 8×8 DOT network showing one disjoint path for S-D node pair (0...Figure 2.15 8×8 Theta network (THN) showing one disjoint path and three re...Figure 2.16 GIN showing paths for S-D node pairs (2, 4; δ = 2) and (6, 6; ...Figure 2.17 56×56 modified baseline showing one disjoint path for S-D node...Figure 2.18 8×8 scalable crossbar network (SCN) showing one disjoint path ...Figure 2.19 8×8 SEN +2 showing two disjoint paths and four redundant paths...Figure 2.20 8×8 Benes network showing two disjoint paths and four redundan...Figure 2.21 8×8 RBN showing two disjoint paths and eight redundant paths f...Figure 2.22 8×8 EBN showing two disjoint paths and eight redundant paths f...Figure 2.23 8×8 Phi network showing two disjoint paths and five redundant ...Figure 2.24 Extra-stage GIN showing nine paths for tag value (δ) = 0.Figure 2.25 CGIN showing five paths for S-D node pair (1, 1; δ = 0).Figure 2.26 PCGIN showing two disjoint paths for S-D node pair (1, 1; δ = ...Figure 2.27 FCGIN showing two disjoint paths for S-D node pair (1, 1; δ = ...Figure 2.28 8×8 ASEN showing two disjoint paths and four redundant paths f...Figure 2.29 8×8 Kappa showing two disjoint paths and eight redundant paths...Figure 2.30 16×16 Tandem Omega showing two disjoint paths for S-D node pai...Figure 2.31 8×8 enhanced IADM network showing three disjoint paths and eig...Figure 2.32 3D-CGIN showing three disjoint paths (red), three alternate pa...Figure 2.33 8×8 IEGN showing three disjoint paths (solid lines) and twelve...Figure 2.34 8×8 Pars network showing three disjoint paths (solid lines) an...Figure 2.35 16×16 ABN showing two disjoint paths and four redundant paths ...Figure 2.36 56×56 EGS Network showing four disjoint paths for S-D node pai...Figure 2.37 Three stage clos network. Disjoint paths and three redundant p...Figure 2.38 16×16 clos network showing four disjoint and redundant paths f...
3 Chapter 3Figure 3.1 Terminal reliability layout of an 8×8 SEN+.Figure 3.2 Network reliability layout of an 8×8 SEN.Figure 3.3 Broadcast reliability layout of an 8×8 SEN+.Figure 3.4 Switching element state in an 8×8 SEN+.Figure 3.5 Reliability logic graph of 8 x 8 SEN+.Figure 3.6 Series RBD.Figure 3.8 Mixed parallel RBD.Figure 3.9 Terminal reliability RBD of 8×8 SEN+.Figure 3.10 8×8 gamma network (GIN) with 4 stages.Figure 3.11 Lower bound reliability of N×N gamma network.Figure 3.12 Upper bound reliability of N×N gamma network.
4 Chapter 4Figure 4.1 Undirected ARPA network.Figure 4.2 8×8 delta network.Figure 4.3 5 nodes and 8 links network for reliability evaluation.Figure 4.4 8×8 SEN+ showing two disjoint and redundant paths for S-D node ...Figure 4.5 8×8 omega network.
5 Chapter 5Figure 5.1 Sample network.Figure 5.2 MIN showing four disjoints paths and five redundant paths for S...Figure 5.3 8×8 Benes network showing two disjoint paths and four redundant...Figure 5.4 8 nodes and 9 links network for reliability evaluation.
6 Chapter 6Figure 6.1 4DMIN showing four disjoints paths and six redundant paths for ...Figure 6.2 Outgoing Links and the Routing Bits from Stage 0 to Stage 2 bas...Figure 6.3 Dynamic rerouting concept in 4DMIN for S-D node pair (3, 6; δ =...Figure 6.4 Dynamic rerouting behavior during Busy/Working switch.Figure 6.5 Dynamic rerouting behavior during Faulty/Failed switch.Figure 6.6 RIN showing Fault Redundant Link at Initial and Final Stage.Figure 6.7 RIN showing Four Disjoint and Twelve Redundant Paths for S-D no...Figure 6.8 Outgoing Links and the Routing Bits from Stage 0 to Stage 2 dep...Figure 6.9 Transmission path for S-D node pair (0, 7) from Stage 0 to Stag...Figure 6.10 RIN Dynamic Routing Behavior for S-D node pair (2, 6). (Solid ...Figure 6.11 RIN showing paths from Source 2 to all the Destinations when s...
1 Cover
2 Table of Contents
3 Begin Reading
1 ii
2 iii
3 iv
4 ix
5 x
6 xi
7 xiii
8 xiv
9 1
10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 10
19 11
20 12
21 13
22 14
23 15
24 16
25 17
26 18
27 19
28 20
29 21
30 22
31 23
32 24
33 25
34 26
35 27
36 28
37 29
38 30
39 31
40 32
41 33
42 34
43 35
44 36
45 37
46 38
47 39
48 40
49 41
50 42
51 43
52 44
53 45
54 46
55 47
56 48
57 49
58 50
59 51
60 52
61 53
62 54
63 55
64 56
65 57
66 58
67 59
68 60
69 61
70 63
71 64
72 65
73 66
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 74
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 85
92 86
93 87
94 88
95 89
96 90
97 91
98 92
99 93
100 94
101 95
102 96
103 97
104 98
105 99
106 100
107 101
108 102
109 103
110 104
111 105
112 106
113 107
114 108
115 109
116 110
117 111
118 112
119 115
120 116
121 117
122 118
123 119
124 120
125 121
126 122
127 123
128 124
129 125
130 126
131 127
132 128
133 129
134 130
135 131
136 132
137 133
138 134
139 135
140 136
141 137
142 138
143 139
144 140
145 141
146 142
147 143
148 144
149 145
150 146
151 147
152 148
153 149
154 150
155 151
156 152
157 153
158 154
159 155
160 156
161 157
162 158
163 159
164 160
165 161
166 162
167 163
168 164
169 165
170 166
171 167
172 168
173 169
174 170
175 171
176 172
177 173
178 174
179 175
180 176
181 177
182 178
183 179
184 180
185 181
186 182
187 183
188 184
189 185
190 186
191 187
192 188
193 189
194 190
195 191
196 192
197 193
198 194
199 195
200 196
201 197
202 198
203 199
204 200
205 201
206 203
207 204
208 205
209 206
210 207
211 208
212 209
213 210
214 211
215 213
216 214
217 215
218 216
219 217
Scrivener Publishing100 Cummings Center, Suite 541 JBeverly, MA 01915-6106
Performability Engineering SeriesSeries Editors: Krishna B. Misra ( kbmisra@gmail.com)
Scope: A true performance of a product, or system, or service must be judged over the entire life cycle activities connected with design, manufacture, use and disposal in relation to the economics of maximization of dependability, and minimizing its impact on the environment. The concept of performability allows us to take a holistic assessment of performance and provides an aggregate attribute that reflects an entire engineering effort of a product, system, or service designer in achieving dependability and sustainability. Performance should not just be indicative of achieving quality, reliability, maintainability and safety for a product, system, or service, but achieving sustainability as well. The conventional perspective of dependability ignores the environmental impact considerations that accompany the development of products, systems, and services.
Читать дальше