Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control

Здесь есть возможность читать онлайн «Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Multi-parametric Optimization and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Multi-parametric Optimization and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

R
ecent developments in multi-parametric optimization and control
Multi-Parametric Optimization and Control Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. 
The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. 
Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.

Multi-parametric Optimization and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Multi-parametric Optimization and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In particular, let картинка 118be the concatenation of the vectors Multiparametric Optimization and Control - изображение 119and Multiparametric Optimization and Control - изображение 120 Multiparametric Optimization and Control - изображение 121. The first‐order Taylor expansion of the vector F around can be expressed as follows 120 Under the assumptions and the principles - фото 122can be expressed as follows:

(1.20) Under the assumptions and the principles of the Basic Sensitivity Theorem in a - фото 123

Under the assumptions and the principles of the Basic Sensitivity Theorem, in a neighborhood of картинка 124the first‐order KKT conditions hold and the value of F( картинка 125) around картинка 126remains zero. For systems that consist of polynomial objective functions of up to second degree and linear constraints, with respect to the optimization variables and the uncertain parameters, the first‐order Taylor expansion is exact. Hence, the exact multi‐parametric solution can be obtained for the following multi‐parametric quadratic programming problem

(1.21) where matrices and - фото 127

where matrices картинка 128, and картинка 129, картинка 130, картинка 131and the scalars картинка 132, картинка 133correspond to the картинка 134and картинка 135inequality and equality constraints of the sets картинка 136and картинка 137, respectively. This problem serves as the basis that will be discussed in Part I, where its solution properties and solution strategies among other things are in focus. Part II then focusses on the application of such problems to optimal control, as the use of parameters enables the formulation of explicit model predictive control problems.

1.3 Polytopes

Multi‐parametric programming is intimately related to the properties and operations applicable to polytopes. In the following, some basic definitions on polytopes are stated, which are used throughout the book.

Definition 1.9

A function Multiparametric Optimization and Control - изображение 138, where картинка 139is a polytope, is called piecewise affine if it is possible to partition into disjoint polytopes called critical regions and 122 - фото 140into disjoint polytopes, called critical regions, and 122 Remark 12The definition of piecewise quadratic is analogous - фото 141and

(1.22) Remark 12The definition of piecewise quadratic is analogous Definition 110 - фото 142

Remark 1.2The definition of piecewise quadratic is analogous.

Definition 1.10

The set is called a dimensional polytope if it satisfies 123 wher - фото 143is called a dimensional polytope if it satisfies 123 where is finite - фото 144‐dimensional polytope if it satisfies

(1.23) where is finite A schematic representation of a polytope is given in Figure - фото 145

where is finite A schematic representation of a polytope is given in Figure 11 - фото 146is finite.

A schematic representation of a polytope is given in Figure 1.1.

Figure 11A schematic representation of a twodimensional polytope In - фото 147

Figure 1.1A schematic representation of a two‐dimensional polytope картинка 148.

In addition to Definition ( 1.10), the following well‐known characteristics of polytopes are considered:

A polytope is called bounded if and only if there exists a finite and such for all .

A polytope, which is closed and bounded, is called compact.

Let be an ‐dimensional polytope. Then, a subset of a polytope is called a face of if it can be represented as(1.24) for some inequality , which holds for all . The faces of polytopes of dimension , 1, and 0 are referred to as facets, edges, and vertices, respectively.

Two polytopes and are called disjoint if . Similarly, two polytopes and are called overlapping if . Lastly, two polytopes and are called adjacent or neighboring if is a ‐dimensional polytope.

Let and be two adjacent polytopes. Then the facet‐to‐facet property is said to hold if is a facet of both and (see Figure 1.2for an illustration).

Let be an ‐dimensional polytope. Then, there exists a series of vertices such that (1.25)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Multi-parametric Optimization and Control»

Представляем Вашему вниманию похожие книги на «Multi-parametric Optimization and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Multi-parametric Optimization and Control»

Обсуждение, отзывы о книге «Multi-parametric Optimization and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x