David Machin - Medical Statistics

Здесь есть возможность читать онлайн «David Machin - Medical Statistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Medical Statistics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Medical Statistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The 5th edition of this popular introduction to statistics for the medical and health sciences has undergone a significant revision, with several new chapters added and examples refreshed throughout the book. Yet it retains its central philosophy to explain medical statistics with as little technical detail as possible, making it accessible to a wide audience. 
Helpful multi-choice exercises are included at the end of each chapter, with answers provided at the end of the book. Each analysis technique is carefully explained and the mathematics kept to minimum. Written in a style suitable for statisticians and clinicians alike, this edition features many real and original examples, taken from the authors' combined many years' experience of designing and analysing clinical trials and teaching statistics.
Students of the health sciences, such as medicine, nursing, dentistry, physiotherapy, occupational therapy, and radiography should find the book useful, with examples relevant to their disciplines. The aim of training courses in medical statistics pertinent to these areas is not to turn the students into medical statisticians but rather to help them interpret the published scientific literature and appreciate how to design studies and analyse data arising from their own projects. However, the reader who is about to design their own study and collect, analyse and report on their own data will benefit from a clearly written book on the subject which provides practical guidance to such issues.
The practical guidance provided by this book will be of use to professionals working in and/or managing clinical trials, in academic, public health, government and industry settings, particularly medical statisticians, clinicians, trial co-ordinators. Its practical approach will appeal to applied statisticians and biomedical researchers, in particular those in the biopharmaceutical industry, medical and public health organisations.

Medical Statistics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Medical Statistics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3 If two outcomes are independent (i.e. knowing the outcome of one experiment tells us nothing about the other experiment), then the probability of both occurring is the product of the individual probabilities (this is known as the ‘multiplication rule’).

When the outcome can never happen the probability is 0. When the outcome will definitely happen the probability is 1. If two events are mutually exclusive then only one can happen. For example, the outcome of a trial might be death (probability 5%) and severe disability (probability 20%). Thus, by the addition rule the probability of either death or severe disability is 25%.

If two events are independent then the fact that one has happened does not affect the chance of the other event happening. For example, the probability that a pregnant woman gives birth to a boy (event A) and the probability of white Christmas (event B). These two events are unconnected since the probability of giving birth to a boy is not related to the weather at Christmas.

Examples of Addition and Multiplication Rules – Using Dice Rolling

If we throw a six‐sided die the probability of throwing a 6 is 1/6 and the probability of a 5 is also 1/6. We cannot throw a 5 and 6 at the same time (these events are mutually exclusive) using 1 die so the probability of throwing either 5 or a 6 is (by the addition rule):

Suppose we throw two sixsided dice together The probability of throwing a 6 - фото 47

Suppose we throw two six‐sided dice together. The probability of throwing a 6 is 1/6 for each die. The outcome of each die is independent of the other. Therefore, the probability of throwing two 6s together (by the multiplication rule) is:

Probability Distributions for Discrete Outcomes If we toss a twosided coin it - фото 48

Probability Distributions for Discrete Outcomes

If we toss a two‐sided coin it comes down either heads or tails. In a single toss of the coin you are uncertain whether you will get a head or a tail. However, if we carry on tossing our coin, we should get several heads and several tails. If we go on doing this for long enough, then we would expect to get as many heads as we do tails. So, the probability of a head being thrown is a half, because in the long run a head should occur on half the throws. The number of heads which might arise in several tosses of the coin is called a random variable , that is a variable which can take more than one value, each with a given probability attached to them.

If we toss a coin the two possibilities; head (H) – scored 1, or tail (T) – scored 0, are mutually exclusive and these are the only events which can happen. If we let X be a random variable that is the number of heads shown on a single toss and is therefore either 1 or 0, then the probability distribution, for X is: probability (H) = ½; probability (T) = ½ and is shown graphically in Figure 4.3a.

Figure 43 Examples of probability distributions a Probability distribution - фото 49

Figure 4.3 Examples of probability distributions. (a) Probability distribution for the number of heads ( X ) shown in one toss of a coin. (b) Probability distribution for the number of heads ( Y ) shown in two tosses of a coin. (c) Probability distribution for the number of heads in four tosses of a coin. (d) Probability distribution for the number of heads in ten tosses of a coin.

What happens if we toss two coins at once? We now have four possible events: HH, HT, TH, and TT. There are all equally likely and each has probability ¼. If we let Y be the number of heads then Y has three possible values 0, 1, and 2. Y = 0 only when we get TT and has probability ¼. Similarly, Y = 2 only when we get HH, so has probability ¼. However, Y = 1 either when we get HT or TH and so has probability ¼ + ¼ = ½. The probability distribution for Y is shown in Figure 4.3b. The distribution for the number of heads becomes more symmetrical as the number of coin tosses increases ( Figures 4.3c and d).

In general, we can think of the tosses of the coin as trials, each of which can have an outcome of success (H) or failure (T). These distributions are all examples of what is known as the Binomial distribution. In addition, we will discuss two more distributions that are the backbone of medical statistics: the Poisson and the Normal. Each of the distributions is known as the probability distribution function, which gives the probability of observing an event. The corresponding formulas are given in Section 4.7. These formulas contain certain constants, known as parameters, which identify the particular distribution, and from which various characteristics of the distribution, such as its mean and standard deviation, can be calculated.

4.2 The Binomial Distribution

If a group of patients is given a new treatment such as acupuncture for the relief of a particular condition, such as tension type headache, then the proportion p being successfully treated can be regarded as estimating the population treatment success rate π (here, π denotes a population value and has no connection at all with the mathematical constant 3.14159). The sample proportion p is analogous to the sample mean картинка 50, in that if we score zero for those s patients who fail on treatment, and unity for those r who succeed, then p = r / n , where n = r + s is the total number of patients treated. The Binomial distribution is characterised by the parameters n (the number of individuals in the sample, or repetitions of the trial) and π (the true probability of success for each individual, or in each trial). The formula is given as Eq. (4.1)in Section 4.9.

For a fixed sample size n the shape of the Binomial distribution depends only on π. Suppose n = 5 patients are to be treated, and it is known that on average 0.25 will respond to this particular treatment. The number of responses actually observed can only take integer values between 0 (no responses) and 5 (all respond). The Binomial distribution for this case is illustrated in Figure 4.4a. The distribution is not symmetric; it has a maximum at one response and the height of the blocks corresponds to the probability of obtaining the particular number of responses from the five patients yet to be treated.

Figure 44 Binomial distribution for π 025 and various values of n The - фото 51

Figure 4.4 Binomial distribution for π = 0.25 and various values of n . The horizontal scale in each diagram shows the value of r the number of successes.

Figure 4.4illustrates the shape of the Binomial distribution for various n and π = 0.25. When n is small (here 5 and 10), as in Figure 4.4a and b, the distribution is skewed to the right. The distribution becomes more symmetrical as the sample size increases (here 20 and 50) as in Figure 4.4c and d. We also note that the width of the bars decreases as n increases since the total probability of unity is divided amongst more and more possibilities.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Medical Statistics»

Представляем Вашему вниманию похожие книги на «Medical Statistics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Medical Statistics»

Обсуждение, отзывы о книге «Medical Statistics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x