Ross Anderson - Security Engineering

Здесь есть возможность читать онлайн «Ross Anderson - Security Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Security Engineering: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Security Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Now that there’s software in everything, how can you make anything
 secure? Understand how to engineer dependable systems with this newly updated classic 
In 
Cambridge University professor Ross Anderson updates his classic textbook and teaches readers how to design, implement, and test systems to withstand both error and attack. 
This book became a best-seller in 2001 and helped establish the discipline of security engineering. By the second edition in 2008, underground dark markets had let the bad guys specialize and scale up; attacks were increasingly on users rather than on technology. The book repeated its success by showing how security engineers can focus on usability. 
Now the third edition brings it up to date for 2020. As people now go online from phones more than laptops, most servers are in the cloud, online advertising drives the Internet and social networks have taken over much human interaction, many patterns of crime and abuse are the same, but the methods have evolved. Ross Anderson explores what security engineering means in 2020, including: 
How the basic elements of cryptography, protocols, and access control translate to the new world of phones, cloud services, social media and the Internet of Things Who the attackers are – from nation states and business competitors through criminal gangs to stalkers and playground bullies What they do – from phishing and carding through SIM swapping and software exploits to DDoS and fake news Security psychology, from privacy through ease-of-use to deception The economics of security and dependability – why companies build vulnerable systems and governments look the other way How dozens of industries went online – well or badly <l

Security Engineering — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Security Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The critical innovation, for the banks’ purposes, was to use a code book but to make the coding one-way by adding the code groups together into a number called a test key . (Modern cryptographers would describe it as a hash value or message authentication code , terms I'll define more carefully later.)

Here is a simple example. Suppose the bank has a code book with a table of numbers corresponding to payment amounts as in Figure 5.8.

0 1 2 3 4 5 6 7 8 9
x 1000 14 22 40 87 69 93 71 35 06 58
x 10,000 73 38 15 46 91 82 00 29 64 57
x 100,000 95 70 09 54 82 63 21 47 36 18
x 1,000,000 53 77 66 29 40 12 31 05 87 94

Figure 5.8 : A simple test key system

Now in order to authenticate a transaction for £376,514 we might add together 53 (no millions), 54 (300,000), 29 (70,000) and 71 (6,000) ignoring the less significant digits. This gives us a test key of 207.

Most real systems were more complex than this; they usually had tables for currency codes, dates and even recipient account numbers. In the better systems, the code groups were four digits long rather than two, and in order to make it harder for an attacker to reconstruct the tables, the test keys were compressed: a key of ‘7549’ might become ‘23’ by adding the first and second digits, and the third and fourth digits, ignoring the carry.

This made such test key systems into one-way functions in that although it was possible to compute a test from a message, given knowledge of the key, it was not possible to reverse the process and recover either a message or a key from a single test – the test just did not contain enough information. Indeed, one-way functions had been around since at least the seventeenth century. The scientist Robert Hooke published in 1678 the sorted anagram ‘ceiiinosssttuu’ and revealed two years later that it was derived from ‘Ut tensio sic uis’ – ‘the force varies as the tension’, or what we now call Hooke's law for a spring. (The goal was to establish priority for the idea while giving him time to do more work on it.)

Banking test keys are not strong by the standards of modern cryptography. Given between a few dozen and a few hundred tested messages, depending on the design details, a patient analyst could reconstruct enough of the tables to forge a transaction. With a few carefully chosen messages inserted into the banking system by an accomplice, it's even easier. But the banks got away with it: test keys worked fine from the late nineteenth century through the 1980s. In several years working as a bank security consultant, and listening to elderly auditors’ tales over lunch, I only ever heard of two cases of fraud that exploited it: one external attempt involving cryptanalysis, which failed because the attacker didn't understand bank procedures, and one successful but small fraud involving a crooked staff member. I'll discuss the systems that replaced test keys in the chapter on Banking and Bookkeeping.

However, test keys are our historical example of an algebraic function used for authentication. They have important modern descendants in the authentication codes used in the command and control of nuclear weapons, and also with modern block ciphers. The idea in each case is the same: if you can use a unique key to authenticate each message, simple algebra can give you ideal security. Suppose you have a message картинка 128of arbitrary length and want to compute an authentication code or tag картинка 129of 128 bits length, and the property you want is that nobody should be able to find a different message картинка 130whose authentication code under the same key will also be картинка 131, unless they know the key, except by a lucky guess for which the probability is Security Engineering - изображение 132. You can simply choose a 128-bit prime number Security Engineering - изображение 133and compute Security Engineering - изображение 134(mod картинка 135) where the key consists of two 128-bit numbers картинка 136and картинка 137.

This is secure for the same reason the one-time pad is: given any other message картинка 138you can find another key картинка 139that authenticates картинка 140to картинка 141. So without knowledge of the key, the adversary who sees картинка 142and картинка 143simply has no information of any use in creating a valid forgery. As there are 256 bits of key and only 128 bits of tag, this holds even for an adversary with unlimited computing power: such an adversary can find the картинка 144possible keys for each pair of message and tag but has no way to choose between them. I'll discuss how this universal hash function is used with block ciphers below, and how it's used in nuclear command and control in Part 2.

5.2.5 Asymmetric primitives

Finally, some modern cryptosystems are asymmetric, in that different keys are used for encryption and decryption. So, for example, most web sites nowadays have a certificate containing a public key with which people can encrypt their session using a protocol called TLS; the owner of the web page can decrypt the traffic using the corresponding private key . We'll go into the details later.

There are some pre-computer examples of this too; perhaps the best is the postal service. You can send me a private message by addressing it to me and dropping it into a post box. Once that's done, I'm the only person who'll be able to read it. Of course, many things can go wrong: you might get the wrong address for me (whether by error or as a result of deception); the police might get a warrant to open my mail; the letter might be stolen by a dishonest postman; a fraudster might redirect my mail without my knowledge; or a thief might steal the letter from my doormat. Similar things can go wrong with public key cryptography: false public keys can be inserted into the system, computers can be hacked, people can be coerced and so on. We'll look at these problems in more detail in later chapters.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Security Engineering»

Представляем Вашему вниманию похожие книги на «Security Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Security Engineering»

Обсуждение, отзывы о книге «Security Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x