A Framework of Human Systems Engineering
Здесь есть возможность читать онлайн «A Framework of Human Systems Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:A Framework of Human Systems Engineering
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
A Framework of Human Systems Engineering: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «A Framework of Human Systems Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A Framework of Human Systems Engineering
Applications and Case Studies
A Framework of Human Systems Engineering: Applications and Case Studies
A Framework of Human Systems Engineering — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «A Framework of Human Systems Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Michael Melkonian Emirates College for Advanced Education Abu Dhabi, United Arab Emirates
Kelly J. Neville The MITRE Corporation Orlando, FL, USA
Vladimir Parezanović Khalifa University of Science and Technology Abu Dhabi, United Arab Emirates
Maria Natalia Russi‐Vigoya KBR, Houston, TX, USA
George Salazar Johnson Space Center, NASA, Houston, TX, USA
Christian G. W. Schnedler CISSP®, CSEP®, PMP®, and PSP®; IDEMIA National Security Solutions, New York, NY, USA
William R. Scott SMART Infrastructure Facility University of Wollongong, Wollongong NSW, Australia
Sarah M. Sherwood Naval Medical Research Unit Dayton Wright‐Patterson AFB, OH, USA
Farid Shirvani SMART Infrastructure Facility, University of Wollongong, Wollongong, NSW, Australia
Andreas Tolk The MITRE Corporation, Charlottesville, VA, USA
Melissa M. Walwanis Naval Air Warfare Center Training Systems Division Orlando, FL, USA
M. Lynn Woolsey Emirates College for Advanced Education Abu Dhabi United Arab Emirates
Kate J. Yaxley School of Engineering and Information Technology, University of New South Wales, Canberra, Canberra, ACT, Australia
Michael Zipperle University of New South Wales at Australian Defence Force Academy, Canberra, ACT, Australia
Foreword
No one would question that we are today living in the age of connectivity. Global communications, global commerce, and global pandemics epitomize current affairs.
From a system of systems perspective rarely do we ever design and employ a system in isolation. Systems are developed and used in new and innovative ways as needs change, often working with other systems in ways not considered when the systems themselves were conceived. Complex supply chains integral to the modern economy include connections and dependencies that go beyond common understanding. With unknown billions of nodes in the Internet, connectivity between systems and people is a bedrock of contemporary society.
People are connected to their workplace, retailers, and their friends and family electronically. The majority of Americans possess “smart phones” that connect them into a growing network of cyber–physical systems – the Internet of Things – where they are part of a complex collaborative exchange with people and systems. People have moved beyond being “users” of systems to become an integral part of systems of systems both in the small and large sense. People no longer simply consume services of systems, but they and their actions are a core part of the dynamics of the larger system of systems. Their actions can affect the systems of systems in ways often not well understood, and changes in human behavior can have considerable ripple effects on large complex societal capabilities.
All of this has profound implications for human systems engineering. While a premium continues to be placed on human‐centered design focusing on the direct relationship between systems and their users, human systems considerations have expanded in this age of connectivity putting new demands on systems engineers as they factor human systems considerations into engineering endeavors.
We as systems engineers are no longer just expected to ensure that our systems are usable by an individual, but we are also expected to integrate users into complex distributed systems of systems where the users are part of the systems of systems and their behavior is part of the larger system of systems dynamics.
Systems engineers are no longer just expected to design systems, so they have value for the users but increasingly are asked to build systems that also bring value to the system owners through generation of data to support other aspects of the enterprise or to influence people’s economic, political, or social behavior.
Particularly in safety critical situations, it is no longer enough for systems engineers to design systems that enable people to operate systems to meet their immediate needs, but as these systems are part of a larger dynamic environment, a growing need exists to provide sufficient situational awareness to understand the impacts individual actions may have on other systems and people in the larger systems of systems.
Finally, as systems take on functions that had in the past been done by people, there is an increased emphasis on developing approaches to human systems teaming, a challenge heightened by the increased use of machine learning, where the balance between human and systems may shift over time based on experience.
These changes make this book both timely and important. With the framework provided by Handley in the opening chapter to the research agenda by Tolk at the close, the papers here explore numerous dimensions of human systems engineering, providing a window on experiences today and challenges for the future.
Judith DahmannMITRE Corporation Technical FellowINCOSE FellowAlexandria, Virginia
Preface
The International Council on Systems Engineering (INCOSE) defines Systems Engineering (SE) as an interdisciplinary approach and means to enable the realization of successful systems. SE focuses on defining customer needs by documenting requirements and then proceeds with functional analysis, design synthesis, and system validation. Throughout this process the complete system life cycle is considered: operations, performance, test, manufacturing, cost and schedule, training and support, and disposal.
SE promotes a team effort integrating various disciplines and specialty groups into a structured development process that considers both the business and the technical needs of all customers with the goal of providing a quality product that meets the users’ needs. It is therefore considered a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. In all these aspects, humans play a vital role. They define, use, maintain, and, as operators and decision makers, are part of the system. Since a system is only as strong as its weakest component, human potentials, capabilities, constraints, and limitations are pivotal for the successful engineering of systems.
The Human Systems Integration (HSI) Technical Committee (TC) of the IEEE Systems Council was formed in order to increase awareness of the user during SE processes. It focuses on identifying and improving methods to integrate human concerns into the conceptualization and design of systems. It encourages early understanding of human roles and responsibilities, along with limitations and constraints that may impact system design. This consideration of human concerns from the system design perspective is termed human systems engineering (HSE). HSE describes the engineering efforts conducted as part of the system design and analysis processes to evaluate the appropriateness and feasibility of system functions and roles allocated to operators. The importance of this topic is apparent from notable design errors, i.e. the placement of the iPhone 4 antenna resulting in poor performance when holding the phone, to design successes, for example, the Xbox Kinect that allowed users to interact with the game system without a handheld interface.
One of the goals of the HSI TC is to improve communication between the HSI and SE communities to provide better integration of human and systems to expedite resolution of issues. The HSI TC members promote this collaboration through conference presentations and workshops, as well as cooperation with other societies through joint events. Our members serve as technical reviewers and society liaisons to promote the role of human factors in engineering. This volume is a continuation of our technical committee outreach efforts.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «A Framework of Human Systems Engineering»
Представляем Вашему вниманию похожие книги на «A Framework of Human Systems Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «A Framework of Human Systems Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.