Francesca Lazzeri - Machine Learning for Time Series Forecasting with Python

Здесь есть возможность читать онлайн «Francesca Lazzeri - Machine Learning for Time Series Forecasting with Python» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning for Time Series Forecasting with Python: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning for Time Series Forecasting with Python»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Learn how to apply the principles of machine learning to 
time series modeling with this indispensable resource
Machine Learning for Time Series Forecasting with Python Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. 
Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: 
Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting 
is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. 
Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.

Machine Learning for Time Series Forecasting with Python — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning for Time Series Forecasting with Python», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6 Chapter 6Figure 6.1: The machine learning model workflowFigure 6.2: The modeling and scoring processFigure 6.3: First few rows of the energy data setFigure 6.4: Load data set plotFigure 6.5: Load data set plot of the first week of July 2014Figure 6.6: Web service deployment and consumptionFigure 6.7: Energy demand forecast end-to-end data flow

Guide

1 Cover Page

2 Table of Contents

3 Begin Reading

Pages

1 i

2 xv

3 xvi

4 xvii

5 xviii

6 1

7 2

8 3

9 4

10 5

11 6

12 7

13 8

14 9

15 10

16 11

17 12

18 13

19 14

20 15

21 16

22 17

23 18

24 19

25 20

26 21

27 22

28 23

29 24

30 25

31 26

32 27

33 29

34 30

35 31

36 32

37 33

38 34

39 35

40 36

41 37

42 38

43 39

44 40

45 41

46 42

47 43

48 44

49 45

50 46

51 47

52 48

53 49

54 50

55 51

56 52

57 53

58 54

59 55

60 56

61 57

62 58

63 59

64 61

65 62

66 63

67 64

68 65

69 66

70 67

71 68

72 69

73 70

74 71

75 72

76 73

77 74

78 75

79 76

80 77

81 78

82 79

83 80

84 81

85 82

86 83

87 84

88 85

89 86

90 87

91 88

92 89

93 90

94 91

95 92

96 93

97 94

98 95

99 96

100 97

101 98

102 99

103 101

104 102

105 103

106 104

107 105

108 106

109 107

110 108

111 109

112 110

113 111

114 112

115 113

116 114

117 115

118 116

119 117

120 118

121 119

122 120

123 121

124 122

125 123

126 124

127 125

128 126

129 127

130 128

131 129

132 130

133 131

134 132

135 133

136 134

137 135

138 136

139 137

140 138

141 139

142 140

143 141

144 142

145 143

146 144

147 145

148 146

149 147

150 148

151 149

152 150

153 151

154 152

155 153

156 154

157 155

158 156

159 157

160 158

161 159

162 160

163 161

164 162

165 163

166 164

167 165

168 167

169 168

170 169

171 170

172 171

173 172

174 173

175 174

176 175

177 176

178 177

179 178

180 179

181 180

182 181

183 182

184 183

185 184

186 185

187 186

188 187

189 188

190 189

191 190

192 191

193 192

194 193

195 194

196 195

197 196

198 197

199 198

200 199

201 200

202 201

203 202

204 203

205 204

206 205

207 206

208 ii

209 iii

210 v

211 vii

212 207

Machine Learning for Time Series Forecasting with Python Francesca Lazzeri - фото 1

Machine Learning for Time Series Forecasting with Python ®

Francesca Lazzeri, PhD

Introduction Time series data is an important source of information used for - фото 2

Introduction

Time series data is an important source of information used for future decision making, strategy, and planning operations in different industries: from marketing and finance to education, healthcare, and robotics. In the past few decades, machine learning model-based forecasting has also become a very popular tool in the private and public sectors.

Currently, most of the resources and tutorials for machine learning model-based time series forecasting generally fall into two categories: code demonstration repo for certain specific forecasting scenarios, without conceptual details, and academic-style explanations of the theory behind forecasting and mathematical formula. Both of these approaches are very helpful for learning purposes, and I highly recommend using those resources if you are interested in understanding the math behind theoretical hypotheses.

This book fills that gap: in order to solve real business problems, it is essential to have a systematic and well-structured forecasting framework that data scientists can use as a guideline and apply to real-world data science scenarios. The purpose of this hands-on book is to walk you through the core steps of a practical model development framework for building, training, evaluating, and deploying your time series forecasting models.

The first part of the book ( Chapters 1and 2) is dedicated to the conceptual introduction of time series, where you can learn the essential aspects of time series representations, modeling, and forecasting.

In the second part ( Chapters 3through 6), we dive into autoregressive and automated methods for forecasting time series data, such as moving average, autoregressive integrated moving average, and automated machine learning for time series data. I then introduce neural networks for time series forecasting, focusing on concepts such as recurrent neural networks (RNNs) and the comparison of different RNN units. Finally, I guide you through the most important steps of model deployment and operationalization on Azure.

Along the way, I show at practice how these models can be applied to real-world data science scenarios by providing examples and using a variety of open-source Python packages and Azure. With these guidelines in mind, you should be ready to deal with time series data in your everyday work and select the right tools to analyze it.

What Does This Book Cover?

This book offers a comprehensive introduction to the core concepts, terminology, approaches, and applications of machine learning and deep learning for time series forecasting: understanding these principles leads to more flexible and successful time series applications.

In particular, the following chapters are included:

Chapter 1: Overview of Time Series Forecasting This first chapter of the book is dedicated to the conceptual introduction of time series, where you can learn the essential aspects of time series representations, modeling, and forecasting, such as time series analysis and supervised learning for time series forecasting.We will also look at different Python libraries for time series data and how libraries such as pandas, statsmodels, and scikit-learn can help you with data handling, time series modeling, and machine learning, respectively.Finally, I will provide you with general advice for setting up your Python environment for time series forecasting.

Chapter 2: How to Design an End-to-End Time Series Forecasting Solution on the Cloud The purpose of this second chapter is to provide an end-to-end systematic guide for time series forecasting from a practical and business perspective by introducing a time series forecasting template and a real-world data science scenario that we use throughout this book to showcase some of the time series concepts, steps, and techniques discussed.

Chapter 3: Time Series Data Preparation In this chapter, I walk you through the most important steps to prepare your time series data for forecasting models. Good time series data preparation produces clean and well-curated data, which leads to more practical, accurate predictions.Python is a very powerful programming language to handle data, offering an assorted suite of libraries for time series data and excellent support for time series analysis, such as SciPy, NumPy, Matplotlib, pandas, statsmodels, and scikit-learn.You will also learn how to perform feature engineering on time series data, with two goals in mind: preparing the proper input data set that is compatible with the machine learning algorithm requirements and improving the performance of machine learning models.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning for Time Series Forecasting with Python»

Представляем Вашему вниманию похожие книги на «Machine Learning for Time Series Forecasting with Python» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning for Time Series Forecasting with Python»

Обсуждение, отзывы о книге «Machine Learning for Time Series Forecasting with Python» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x