DNA- and RNA-Based Computing Systems

Здесь есть возможность читать онлайн «DNA- and RNA-Based Computing Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

DNA- and RNA-Based Computing Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «DNA- and RNA-Based Computing Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the science of biocomputing with this comprehensive and forward-looking new resource DNA- and RNA-Based Computing Systems A perfect companion to the recently published
by the same editor, the book is an authoritative reference for those who hope to better understand DNA- and RNA-based logic gates, multi-component logic networks, combinatorial calculators, and related computational systems that have recently been developed for use in biocomputing devices.
DNA- and RNA-Based Computing Systems A thorough introduction to the fields of DNA and RNA computing, including DNA/enzyme circuits A description of DNA logic gates, switches and circuits, and how to program them An introduction to photonic logic using DNA and RNA The development and applications of DNA computing for use in databases and robotics Perfect for biochemists, biotechnologists, materials scientists, and bioengineers,
also belongs on the bookshelves of computer technologists and electrical engineers who seek to improve their understanding of biomolecular information processing. Senior undergraduate students and graduate students in biochemistry, materials science, and computer science will also benefit from this book.

DNA- and RNA-Based Computing Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «DNA- and RNA-Based Computing Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

45 45 Shen, H., Wang, Y., Wang, J. et al. (2019). Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Interfaces 11: 13859–13873. https://doi.org/10.1021/acsami.8b06175.

46 46 Goldsworthy, V., LaForce, G., Abels, S., and Khisamutdinov, E.E. (2018). Fluorogenic RNA aptamers: a nano‐platform for fabrication of simple and combinatorial logic gates. Nanomaterials (Basel) 8 (Art. No.: 984) https://doi.org/10.3390/nano8120984.

47 47 Kang, K.N. and Lee, Y.S. (2013). RNA aptamers: a review of recent trends and applications. Adv. Biochem. Eng./Biotechnol. 131: 153–169. https://doi.org/10.1007/10_2012_136.

48 48 Tuerk, C. and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249: 505–510. https://doi.org/10.1126/science.2200121.

49 49 Ellington, A.D. and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. https://doi.org/10.1038/346818a0.

50 50 Iliuk, A.B., Hu, L., and Tao, W.A. (2011). Aptamer in bioanalytical applications. Anal. Chem. 83: 4440–4452. https://doi.org/10.1021/ac201057w.

51 51 Panigaj, M., Johnson, M.B., Ke, W. et al. (2019). Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13: 12301–12321. https://doi.org/10.1021/acsnano.9b06522.

52 52 Goud, K.Y., Reddy, K.K., Satyanarayana, M. et al. (2019). A review on recent developments in optical and electrochemical aptamer‐based assays for mycotoxins using advanced nanomaterials. Mikrochim. Acta 187: 29. https://doi.org/10.1007/s00604-019-4034-0.

53 53 Li, F., Yu, Z., Han, X., and Lai, R.Y. (2019). Electrochemical aptamer‐based sensors for food and water analysis: a review. Anal. Chim. Acta 1051: 1–23. https://doi.org/10.1016/j.aca.2018.10.058.

54 54 Pehlivan, Z.S., Torabfam, M., Kurt, H. et al. (2019). Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Mikrochim. Acta 186: 563. https://doi.org/10.1007/s00604-019-3659-3.

55 55 Seelig, G., Soloveichik, D., Zhang, D.Y., and Winfree, E. (2006). Enzyme‐free nucleic acid logic circuits. Science 314: 1585–1588. https://doi.org/10.1126/science.1132493.

56 56 Bao, G., Rhee, W.J., and Tsourkas, A. (2009). Fluorescent probes for live‐cell RNA detection. Annu. Rev. Biomed. Eng. 11: 25–47. https://doi.org/10.1146/annurev-bioeng-061008-124920.

57 57 Benenson, Y., Gil, B., Ben‐Dor, U. et al. (2004). An autonomous molecular computer for logical control of gene expression. Nature 429: 423–429. https://doi.org/10.1038/nature02551.

58 58 Zhang, X., Potty, A.S., Jackson, G.W. et al. (2009). Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J. Mol. Recognit. 22: 154–161. https://doi.org/10.1002/jmr.917.

59 59 Masuda, I., Igarashi, T., Sakaguchi, R. et al. (2017). A genetically encoded fluorescent tRNA is active in live‐cell protein synthesis. Nucleic Acids Res. 45: 4081–4093. https://doi.org/10.1093/nar/gkw1229.

60 60 Culler, S.J., Hoff, K.G., and Smolke, C.D. (2010). Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330: 1251–1255. https://doi.org/10.1126/science.1192128.

61 61 Tan, X., Constantin, T.P., Sloane, K.L. et al. (2017). Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging. J. Am. Chem. Soc. 139: 9001–9009. https://doi.org/10.1021/jacs.7b04211.

62 62 Paige, J.S., Wu, K.Y., and Jaffrey, S.R. (2011). RNA mimics of green fluorescent protein. Science 333: 642–646. https://doi.org/10.1126/science.1207339.

63 63 Song, W., Strack, R.L., Svensen, N., and Jaffrey, S.R. (2014). Plug‐and‐play fluorophores extend the spectral properties of Spinach. J. Am. Chem. Soc. 136: 1198–1201. https://doi.org/10.1021/ja410819x.

64 64 Dolgosheina, E.V., Jeng, S.C., Panchapakesan, S.S. et al. (2014). RNA mango aptamer‐fluorophore: a bright, high‐affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9: 2412–2420. https://doi.org/10.1021/cb500499x.

65 65 Song, W., Filonov, G.S., Kim, H. et al. (2017). Imaging RNA polymerase III transcription using a photostable RNA‐fluorophore complex. Nat. Chem. Biol. 13: 1187–1194. https://doi.org/10.1038/nchembio.2477.

66 66 Constantin, T.P., Silva, G.L., Robertson, K.L. et al. (2008). Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10: 1561–1564. https://doi.org/10.1021/ol702920e.

67 67 Babendure, J.R., Adams, S.R., and Tsien, R.Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125: 14716–14717. https://doi.org/10.1021/ja037994o.

68 68 Bouhedda, F., Autour, A., and Ryckelynck, M. (2017). Light‐up RNA aptamers and their cognate fluorogens: from their development to their applications. Int. J. Mol. Sci. 19 https://doi.org/10.3390/ijms19010044.

69 69 Ouellet, J. (2016). RNA fluorescence with light‐up aptamers. Front. Chem. 4: 29. https://doi.org/10.3389/fchem.2016.00029.

70 70 Grate, D. and Wilson, C. (1999). Laser‐mediated, site‐specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 96: 6131–6136. https://doi.org/10.1073/pnas.96.11.6131.

71 71 Khisamutdinov, E.F., Li, H., Jasinski, D.L. et al. (2014). Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42: 9996–10004. https://doi.org/10.1093/nar/gku516.

72 72 Warner, K.D., Chen, M.C., Song, W. et al. (2014). Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21: 658–663. https://doi.org/10.1038/nsmb.2865.

73 73 Kellenberger, C.A., Chen, C., Whiteley, A.T. et al. (2015). RNA‐based fluorescent biosensors for live cell imaging of second messenger cyclic di‐AMP. J. Am. Chem. Soc. 137: 6432–6435. https://doi.org/10.1021/jacs.5b00275.

74 74 Filonov, G.S., Moon, J.D., Svensen, N., and Jaffrey, S.R. (2014). Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence‐based selection and directed evolution. J. Am. Chem. Soc. 136: 16299–16308. https://doi.org/10.1021/ja508478x.

75 75 Breaker, R.R. (2002). Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13: 31–39. https://doi.org/10.1016/s0958-1669(02)00281-1.

76 76 Zivarts, M., Liu, Y., and Breaker, R.R. (2005). Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33: 622–631. https://doi.org/10.1093/nar/gki182.

77 77 Kolpashchikov, D.M. (2005). Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 127: 12442–12443. https://doi.org/10.1021/ja0529788.

78 78 Stojanovic, M.N. and Kolpashchikov, D.M. (2004). Modular aptameric sensors. J. Am. Chem. Soc. 126: 9266–9270. https://doi.org/10.1021/ja032013t.

79 79 Song, W., Strack, R.L., and Jaffrey, S.R. (2013). Imaging bacterial protein expression using genetically encoded RNA sensors. Nat. Methods 10: 873–875. https://doi.org/10.1038/nmeth.2568.

80 80 Sharma, S., Zaveri, A., Visweswariah, S.S., and Krishnan, Y. (2014). A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane‐bound compartments. Small 10: 4276–4280. https://doi.org/10.1002/smll.201400833.

81 81 Paige, J.S., Nguyen‐Duc, T., Song, W., and Jaffrey, S.R. (2012). Fluorescence imaging of cellular metabolites with RNA. Science 335: 1194. https://doi.org/10.1126/science.1218298.

82 82 Su, Y., Hickey, S.F., Keyser, S.G., and Hammond, M.C. (2016). In vitro and in vivo enzyme activity screening via RNA‐based fluorescent biosensors for S‐adenosyl‐l‐homocysteine (SAH). J. Am. Chem. Soc. 138: 7040–7047. https://doi.org/10.1021/jacs.6b01621.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «DNA- and RNA-Based Computing Systems»

Представляем Вашему вниманию похожие книги на «DNA- and RNA-Based Computing Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «DNA- and RNA-Based Computing Systems»

Обсуждение, отзывы о книге «DNA- and RNA-Based Computing Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x