DNA- and RNA-Based Computing Systems

Здесь есть возможность читать онлайн «DNA- and RNA-Based Computing Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

DNA- and RNA-Based Computing Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «DNA- and RNA-Based Computing Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the science of biocomputing with this comprehensive and forward-looking new resource DNA- and RNA-Based Computing Systems A perfect companion to the recently published
by the same editor, the book is an authoritative reference for those who hope to better understand DNA- and RNA-based logic gates, multi-component logic networks, combinatorial calculators, and related computational systems that have recently been developed for use in biocomputing devices.
DNA- and RNA-Based Computing Systems A thorough introduction to the fields of DNA and RNA computing, including DNA/enzyme circuits A description of DNA logic gates, switches and circuits, and how to program them An introduction to photonic logic using DNA and RNA The development and applications of DNA computing for use in databases and robotics Perfect for biochemists, biotechnologists, materials scientists, and bioengineers,
also belongs on the bookshelves of computer technologists and electrical engineers who seek to improve their understanding of biomolecular information processing. Senior undergraduate students and graduate students in biochemistry, materials science, and computer science will also benefit from this book.

DNA- and RNA-Based Computing Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «DNA- and RNA-Based Computing Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The study of DNA nanoparticles has been one of significant interest since the early 1980s due to the progressive developmental foundation proposed by Nadrian Seeman [16,17]. Since the conceptual layout of DNA nanotechnology was proposed, widespread interest toward DNA nanotechnology [18–20] and RNA nanotechnology [21–24] has occurred in the scientific community. The design of nucleic acid nanoparticles into well‐defined two‐ or three‐dimensional shapes can be accomplished by using the DNA origami technique [25,26]. This approach utilizes designing multiple short DNA fragments (“staple” strands) that force folding of a long single‐strand DNA (DNA template) into a preprogrammed shape. Computational tools are used to calculate the placement of individual staple strands within a specific region of the DNA template, and due to Watson–Crick base pairing, the necessary sequences of all staple strands can be executed. Figure 5.1demonstrates an example of the DNA dolphin‐shaped structure obtained by DNA origami [27]. Inspired by the DNA origami technique, researchers developed RNA origami. In this approach, RNA polymerase is implemented to transcribe a long RNA strand (RNA template) that can fold into a pre‐rendered shape at isothermal conditions without a need for staple strands [29]. More often, RNA nanoparticles are designed using known crystal structures of complex RNA molecules such as ribosomal RNA containing multiple, well‐defined, and often recurrent RNA structural motifs [30]. These motifs are then manually extracted from larger RNA complexes using 3D modeling software such as Swiss‐PDBViewer [31]. RNA motifs serve as modular building blocks that can be further interconnected to obtain a desired shape [22,28,32,33]. As a result, infinite numbers of nucleic acid nanoparticles with intricate shapes and dimensions can be modeled and assembled utilizing above techniques as exemplified in Figure 5.1. Researchers have used nucleic acids, both DNA and RNA, to fabricate artificial nucleic acid complexes for a variety of applications [34–40]. This has led to the development of therapeutic nucleic acid nanotechnology [41,42], various devices for structure probing in vitro and in vivo [43,44], and biomimetic systems [45], as well as development of nucleic acid “smart” devices capable of performing simple and complex molecular computations [43,46].

Figure 51Nucleic acid nanostructure designing techniques a DNA origami - фото 92

Figure 5.1Nucleic acid nanostructure designing techniques. (a) DNA origami method was used to computationally design and assemble a dolphin‐shaped DNA nanostructure. (b) Example of RNA nanoparticle design approach. Variety of RNA tertiary structures (tecto‐RNAs) were combined to construct different nano‐objects of 1D or linear shape, 2D or polygonal shapes, and 3D shapes.

Source: (Panel a) From Andersen et al. [27]. Reprinted with the permission of American Chemical Society; (Panel b) From Grabow and Jaeger [28]. Reproduced with the permission of American Chemical Society.

5.2 RNA Aptamers are Modular and Programmable Biosensing Units

In parallel to the nucleic acid nanotechnology field, scientific attention has been drawn to nucleic acid aptamer development and their implementations. A nucleic acid aptamer consists of RNA and/or DNA oligonucleotides that bind to a specific target moiety (ligand) with high affinity and specificity. A wide range of various chemical and biological entities can serve as ligands ranging from a small molecule to a mammalian cell [47]. The development of aptamer oligonucleotides that bind to specific ligands was engineered through repeated rounds of in vitro selection also known as SELEX (systematic evolution of ligands by exponential enrichment) in the early 1990s in two independent groups of Larry Gold and Jack Szostak [48,49]. Since then, numerous different types of aptamers were engineered in academic research labs and found applications in various biotechnological fields ( Figure 5.2a). Several recent reviews provide a critical evaluation of nucleic acid aptamer technology with their applications in vitro and in vivo [50–54].

Figure 52a Examples of the diverse application of nucleic acid aptamers b - фото 93

Figure 5.2(a) Examples of the diverse application of nucleic acid aptamers. (b) Schematic 2D representation of fluorogenic RNA aptamer YES gated function. (c) Examples of known light‐up RNA 3D structures of MG‐binding aptamer (red), Spinach RNA aptamer (green), and Mango RNA aptamer (gold) with corresponding fluorophore ligands.

Source: (Panel a) From Iliuk et al. [50]. Reproduced with the permission of American Chemical Society.

In this chapter, we are primarily focusing on fluorogenic RNA aptamers, also known as light‐up RNA aptamers. In particular, discussions will cover fluorogenic RNA aptamers as potential candidates to be used in biocomputing applications. Utilizing light‐up aptamers in bioanalytical disciplines for an analyte sensing in vivo has several advantages. For instance, RNA aptamers can be genetically fused to genes coding for cellular RNAs of interest that in turn can be advantageous in endogenous synthesis of the targeting sequence [55–58]. Inserting light‐up aptamers directly into the target endogenous RNA can be restricted by the labor‐intensive genetics. However, these aptamers, even when used in multiple copies, do not significantly increase the size of the cellular RNA. Only the imaging dye needs to be introduced exogenously, and usually small nonpolar organic dyes can be passively diffused into cells. The major concerns of applying unmodified RNA aptamers in vivo are their susceptibility to degradation by nucleases, making it difficult to intracellularly express them. To tackle this problem, aptamer molecules are expressed by being inserted into a complex noncoding RNA strand, like tRNA, or into an RNA junction to protect the aptamer from degradation and induce folding. Such insertion of the RNA aptamer sequence into endogenous RNA not only allows transcription to be monitored in vitro but can also be used to regulate gene expression in a logical manner [59,60].

In a fluorogenic RNA aptamer, the ligand is typically a small organic dye that can emit fluorescent light upon binding to its aptamer host molecule (otherwise, it is in a nonfluorescent state). This feature is very attractive to develop binary ON and OFF systems where a fluorescence state is ON and a nonfluorescence state is OFF as shown in Figure 5.2b. Over the past two decades, several RNA fluorogenic aptamers were developed, and all can be potentially implemented for fabrication of a nanocomplex with a simple YES logic operation with fluorescence outputs ON and OFF. The examples of such RNA aptamers and ligands as well as their properties are summarized in Table 5.1, and structures of the three most common RNA aptamers are illustrated in Figure 5.2c. The interaction between a ligand and a binding pocket of the host aptamer is usually non‐covalent. Therefore, the interaction can be easily reversed by introducing denaturing agents or certain conditions that will disrupt the correct pocket conformation. Such disruption prevents ligand binding and thus serves as input signals. Once the ligands are in an unbound state (free in solution), their intrinsic fluorescence emission is diminished.

Table 5.1List of some common RNA aptamers with corresponding fluorogenic ligands and properties.

Fluorogen dye Light‐up aptamer K D(nM) Ex/Em (nm) (M −1/cm) Φ a) Fluorogen structure PDB ID b) References
OTB DiR2s‐Apt 662 380/421 73 000 51 6DB9 61 DFHBI Spinach 540 469501 24 300 72 4TS0 62 - фото 94 6DB9 [61]
DFHBI Spinach 540 469/501 24 300 72 4TS0 62 DFHBI1T Spinach2 560 482505 31 000 94 6B3K 63 - фото 95 4TS0 [62]
DFHBI‐1T Spinach2 560 482/505 31 000 94 6B3K 63 DFHBI2T Spinach2 1300 500523 29 000 12 6B3K 63 - фото 96 6B3K [63]
DFHBI‐2T Spinach2 1300 500/523 29 000 12 6B3K 63 TO1 Mango 3 510535 77 500 14 5V3F 64 - фото 97 6B3K [63]
TO‐1 Mango 3 510/535 77 500 14 5V3F 64 DFHO Corn 70 505545 29 000 25 6E80 65 - фото 98 5V3F [64]
DFHO Corn 70 505/545 29 000 25 6E80 65 DIR DIR apt 86 600646 134 000 26 3T0W 66 - фото 99 6E80 [65]
DIR DIR apt 86 600/646 134 000 26 3T0W 66 Mal Green MG aptamer 117 630650 150 000 19 1Q8N 67 - фото 100 3T0W [66]
Mal. Green MG aptamer 117 630/650 150 000 19 1Q8N 67 DIRpro DIR2sApt 252 600658 164 000 33 6D89 61 - фото 101 1Q8N [67]
DIR‐pro DIR2s‐Apt 252 600/658 164 000 33 6D89 61 TO3 Mango 68 637658 9300 NA 5V3F 64 - фото 102 6D89 [61]
TO‐3 Mango 6–8 637/658 9300 N/A 5V3F 64 aΦ referred to quantum yield of the complex expressed in - фото 103 5V3F [64]

aΦ referred to quantum yield of the complex expressed in percentage.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «DNA- and RNA-Based Computing Systems»

Представляем Вашему вниманию похожие книги на «DNA- and RNA-Based Computing Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «DNA- and RNA-Based Computing Systems»

Обсуждение, отзывы о книге «DNA- and RNA-Based Computing Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x