Intelligent Data Analytics for Terror Threat Prediction

Здесь есть возможность читать онлайн «Intelligent Data Analytics for Terror Threat Prediction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Intelligent Data Analytics for Terror Threat Prediction: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Intelligent Data Analytics for Terror Threat Prediction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Intelligent data analytics for terror threat prediction is an emerging field of research at the intersection of information science and computer science, bringing with it a new era of tremendous opportunities and challenges due to plenty of easily available criminal data for further analysis.
This book provides innovative insights that will help obtain interventions to undertake emerging dynamic scenarios of criminal activities. Furthermore, it presents emerging issues, challenges and management strategies in public safety and crime control development across various domains. The book will play a vital role in improvising human life to a great extent. Researchers and practitioners working in the fields of data mining, machine learning and artificial intelligence will greatly benefit from this book, which will be a good addition to the state-of-the-art approaches collected for intelligent data analytics. It will also be very beneficial for those who are new to the field and need to quickly become acquainted with the best performing methods. With this book they will be able to compare different approaches and carry forward their research in the most important areas of this field, which has a direct impact on the betterment of human life by maintaining the security of our society. No other book is currently on the market which provides such a good collection of state-of-the-art methods for intelligent data analytics-based models for terror threat prediction, as intelligent data analytics is a newly emerging field and research in data mining and machine learning is still in the early stage of development.

Intelligent Data Analytics for Terror Threat Prediction — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Intelligent Data Analytics for Terror Threat Prediction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.5.1.1 Network Topology

In computer networks, network topology is defined as design of physical and logical network. Physical design is the actual design of the computer cables and other network devices. The logical design is the way in which the network appears to the devices that use it.

In complex networks, network topology is the arrangement of network in generic graph or tree. In general, many domains like medical, security, pipeline of water, gas, and power grid are available in graph structure. These graphs are required to restructure two topologies as d-regular trees and random geometric trees [34]. Initially, rumor source identification is discussed and introduces methods for general trees and general graphs based on rumor source estimator. Rumor source estimator plays a key role in finding the exact source of rumor. Source estimator mainly based on Maximum likelihood (ML) estimation is the same as a combinatorial problem [9, 35]. The following section will explain required techniques such as rumor source estimator, ML estimator, rumor centrality, and message passing algorithms to detect rumor source in trees.

1.5.1.2 Network Observation

In rumor source identification, network structure plays an important role. When structure of network is known, it is easy to find how a rumor is spread in network using diffusion models such as SI, SIS, SIR and SIRS. If back track these diffusion models then rumor source can be detected easily. To know the structure of network another model is used called network observation, which provides information about states of each node present in network at particular time. Those states are in a susceptible node—able to being infected, infected node—that can widen the rumor more while recovered node—that is alleviates and no longer infected [10]. If information of each node likely is susceptible, infected or recovered is observed then it is easy to generate structure of network from that knowledge. Network observation can be done in three ways: complete observation, snapshot observation and monitor observation.

1.5.1.2.1 Complete Observation

Complete inspection of network presents broad information like whether a node is susceptible, infected or recovered at each time of interval in network [11]. It is not enough to know about state of node at one time only and requires multiple time intervals. Complete observation will give this knowledge even in different time intervals. Complete observation of small scale network is easy as size of network is small but it is hardly possible in large scale networks. Figure 1.7depicts knowledge about this problem, as shown in Figure 1.7(a) regular tree with 7 nodes considered as small scale network and complete observation of network can be possible like root node, leaf nodes, degree of nodes, etc. In Figure 1.7(b) a generic graph is shown with many nodes and multiple connections between each node treated as large scale network and observation is not easy as finding the root node, leaf nodes and degree of nodes are difficult in these kind of large scale networks. It is observed that complete observation gives better results to provide knowledge about states of nodes but works only in small scale networks [39] not in large scale network. To overcome this problem another model is used called as snapshot observation.

1.5.1.2.2 Snapshot Observation

It provides limited information about states of nodes in network at given time interval. To avoid this problem, instead of one or two snapshots, taking multiple snapshots will give better knowledge about nodes in different time intervals. Disadvantages of taking multiple snapshots may consume much time, and although it provides correct information about lone contaminated nodes, it cannot distinguish between recovered or susceptible [37]. So it is difficult to understand about nodes in these states i.e. either they received rumor and ignored it or not received yet.

Figure 17 Network topology 15123 Monitor Observation Monitor - фото 10

Figure 1.7 Network topology.

1.5.1.2.3 Monitor Observation

Monitor observation means monitoring the network by inserting monitor or sensor nodes in it which works as an observer in network [36]. These sensor nodes gather information about states of nodes and pass this to administrator. The administrator will maintain all gathered data about each node state in a database. But there is chance of missing information in monitor observation as sensor nodes are inserted in a few places of network. Also, there may be a loss of information about some nodes where sensor nodes are not available. Due to unavailability of information of some nodes in network it reduces the accuracy of system, as system is based on number of nodes. If number of nodes increases then accuracy may increase but reduces performance of system due heavy load on network.

These are three types of network observations which help to understand states of nodes and network structure. Network topology and network observation both are used to understand the structure of network. Network structure is one of the best factors that are considered in source identification. Other factors also considered are diffusion model which is mandatory in source identification as discussed in Section 1.5.2.

1.5.2 Diffusion Models

Diffusion models are also one of the factors considered in source identification as they give information about how fast information diffusion occurs in network [2]. There are four diffusion models namely susceptibleinfected (SI), susceptible-infected-susceptible (SIS), susceptible-infectedrecovered (SIR), and susceptible-infected-recovered-susceptible (SIRS). All these come under epidemic models, which can spread deceases widely from person to other or group of people. These epidemic models are discussed in the following section as well as how they spread and the differences between them.

1.5.2.1 SI Model

SI model is one of the oldest epidemic models where S stands for susceptible and I for infected. Initially, for complex networks SI model was proposed by Ref. [12]. If complex networks use SI model then state of nodes is either susceptible or infected. Once a node is infected it could remain in same state throughout life as shown in Figure 1.8.But this model is not practical. There is little chance that a susceptible infected node can be recovered and again in future. In social networks once rumor is received by any user, he/she believes it at that particular time and in the future they may know the truth and recover from it, which is not possible in SI model. The models SIS, SIR and SIRS deal with this issue and these models are discussed in the succeeding sections.

Figure 18 SI model 1522 SIS Model The SI model is not practically - фото 11

Figure 1.8 SI model.

1.5.2.2 SIS Model

The SI model is not practically applicable, as it doesn’t allow infected users to be recovered. The SIS model addresses this problem [13, 14], and focuses on number of persons infected and number of persons cured as well. Once anyone is infected they may be cured and become susceptible in the future. Figure 1.9explains the same problem where susceptibility of infection is possible [38]. In social networks once a rumor is received by a user he/she may believe or ignore as they knew fact and can become susceptible in the future.

1.5.2.3 SIR Model

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Intelligent Data Analytics for Terror Threat Prediction»

Представляем Вашему вниманию похожие книги на «Intelligent Data Analytics for Terror Threat Prediction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Intelligent Data Analytics for Terror Threat Prediction»

Обсуждение, отзывы о книге «Intelligent Data Analytics for Terror Threat Prediction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x