Intelligent Data Analytics for Terror Threat Prediction

Здесь есть возможность читать онлайн «Intelligent Data Analytics for Terror Threat Prediction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Intelligent Data Analytics for Terror Threat Prediction: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Intelligent Data Analytics for Terror Threat Prediction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Intelligent data analytics for terror threat prediction is an emerging field of research at the intersection of information science and computer science, bringing with it a new era of tremendous opportunities and challenges due to plenty of easily available criminal data for further analysis.
This book provides innovative insights that will help obtain interventions to undertake emerging dynamic scenarios of criminal activities. Furthermore, it presents emerging issues, challenges and management strategies in public safety and crime control development across various domains. The book will play a vital role in improvising human life to a great extent. Researchers and practitioners working in the fields of data mining, machine learning and artificial intelligence will greatly benefit from this book, which will be a good addition to the state-of-the-art approaches collected for intelligent data analytics. It will also be very beneficial for those who are new to the field and need to quickly become acquainted with the best performing methods. With this book they will be able to compare different approaches and carry forward their research in the most important areas of this field, which has a direct impact on the betterment of human life by maintaining the security of our society. No other book is currently on the market which provides such a good collection of state-of-the-art methods for intelligent data analytics-based models for terror threat prediction, as intelligent data analytics is a newly emerging field and research in data mining and machine learning is still in the early stage of development.

Intelligent Data Analytics for Terror Threat Prediction — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Intelligent Data Analytics for Terror Threat Prediction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1. Bayleyegn, B. W., and Buta, D. B. The Effect of Social Media on Study Habits of Students:-A case study at Oda Bultum University, Oromia Regional State, Ethiopia. Global Journal of Management And Business Research, 2019.

2. Guille, A., Hacid, H., Favre, C., Zighed, D.A., Information diffusion in online social networks: A survey. ACM Sigmod Rec. , 42, 2, 17–28, 2013.

3. Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. Advances in social media research: Past, present and future. Information Systems Frontiers, 20(3), 531–558, 2018.

4. Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012, April). The role of social networks in information diffusion. In Proceedings of the 21st international conference on World Wide Web , pp. 519–528, April 2012.

5. Moore, R. Cybercrime: Investigating high-technology computer crime. LexisNexis, 2005.

6. Smith, A. M. Protection of Children Online: Federal and State Laws Addressing Cyberstalking, Cyberharassment, and Cyberbulling. Congressional Research Service, 2009.

7. Cușmaliuc, C. G., Coca, L. G., Iftene, A. Identifying Fake News on Twitter using Naive Bayes, SVM and Random Forest Distributed Algorithms. In Proceedings of The 13th Edition of the International Conference on Linguistic Resources and Tools for Processing Romanian Language (ConsILR-2018) pp. 177–188, 2018.

8. Cortes, C. and Vapnik, V., Support-vector networks. Mach. Learn. , 20, 3, 273–297, 1995.

9. Shah, D. and Zaman, T., Rumors in a network: Who’s the culprit? IEEE Trans. Inf. Theory , 57, 8, 5163–5181, 2011.

10. Shelke, S. and Attar, V., Source detection of rumor in social network—A review. Online Soc. Netw. Media , 9, 30–42, 2019.

11. Jiang, J., Wen, S., Yu, S., Xiang, Y., Zhou, W., Identifying propagation sources in networks: State-of-the-art and comparative studies. IEEE Commun. Surv. Tutorials , 19, 1, 465–481, 2016.

12. Pastor-Satorras, R. and Vespignani, A., Epidemic spreading in scale-free networks. Phys. Rev. Lett. , 86, 14, 3200, 2001.

13. Newman, M.E.J., The structure and function of complex networks. Soc. Ind. Appl. Math. , 45, 167–256, 2003.

14. Newman, M.E., Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. , 95, 108701, 2005.

15. Liu, D., Yan, E.W., Song, M., Microblog information diffusion: Simulation based on sir model. J. Beijing Univ. Posts Telecommun. , 16, 28–33, 2014.

16. Jin, Y., Wang, W., Xiao, S., An SIRS model with a nonlinear incidence rate. Chaos Solitons Fract. , 34, 1482–1497, 2007.

17. Boudin, F., A comparison of centrality measures for graph-based keyphrase extraction. Proceedings of the Sixth International Joint Conference on Natural Language Processing , pp. 834–838, 2013.

18. Choi, J., Moon, S., Woo, J., Son, K., Shin, J., Yi, Y., Rumor source detection under querying with untruthful answers. IEEE INFOCOM 2017-IEEE Conference on Computer Communications , IEEE, pp. 1–9, 2017.

19. Choi, J., Moon, S., Shin, J., Yi, Y., Estimating the rumor source with anti-rumor in social networks. 2016 IEEE 24th International Conference on Network Protocols (ICNP) , IEEE, pp. 1–6, 2016.

20. Luo, W., Tay, W.P., Leng, M., Identifying infection sources and regions in large networks. IEEE Trans. Signal Process. , 61, 11, 2850–2865, 2013.

21. Zang, W., Zhang, P., Zhou, C., Guo, L., Discovering multiple diffusion source nodes in social networks. Procedia Comput. Sci. , 29, 443–452, 2014.

22. Mustafa, S. E., & Hamzah, A. Online social networking: A new form of social interaction. International Journal of Social Science and Humanity, 1(2), 96, 2011.

23. Sofiya, G., Lesser known social media platforms you can use for marketing, 2019, April 2. Retrieved from http://fromdrive.com/blog/lesser-known-social-media-platforms-you-can-use-for-marketing/.

24. Clement, J., Social media—Statistics, 2019, Sep 4. https://www.statista.com/topics/1164/social-networks/.

25. Azad, M. M., Mazid, K. N., & Sharmin, S. S. Cyber Crime Problem Areas, Legal Areas and the Cyber Crime Law. International Journal of New Technology and Research, 3(5), 2017.

26. Stopbullying.gov, What is Cyberbullying?, 2020. Retrieved from https://www.stopbullying.gov.

27. Halder, D. and Jaishankar, K., Cyber-crime and the victimization of women: laws, rights and regulations , Information Science Reference, Hershey, PA, 2012.

28. Moore, R., Cybercrime: Investigating high-technology computer crime , Routledge, CRC press, Taylor & Francis group 2014.

29. Kantarcıoglu, M., Vaidya, J., & Clifton, C. Privacy preserving naive bayes classifier for horizontally partitioned data. In IEEE ICDM workshop on privacy preserving data mining, pp. 3–9, 2003.

30. Murphy, K.P., Naive Bayes classifiers , vol. 18, p. 60, University of British Columbia, 2006.

31. Qazvinian, V., Rosengren, E., Radev, D., & Mei, Q. Rumor has it: Identifying misinformation in microblogs. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing pp. 1589–1599, 2011.

32. Hamidian, S. and Diab, M.T., Rumor detection and classification for twitter data, arXiv preprint arXiv:1912.08926, 2019.

33. Graves, Lucas; Amazeen, Michelle A., Fact-Checking as Idea and Practice in Journalism, Oxford Research Encyclopedia of Communication, Oxford University Press, 2019.

34. Fuchs, M. and Yu, P.D., Rumor source detection for rumor spreading on random increasing trees. Electron. Commun. Probab. , 20, 2015.

35. Shah, D. and Zaman, T., Finding rumor sources on random trees. Oper. Res. , 64, 3, 736–755, 2016.

36. Jiang, J., Wen, S., Yu, S., Xiang, Y., Zhou, W., Identifying propagation sources in networks: State-of-the-art and comparative studies. IEEE Commun. Surv. Tutorials , 19, 1, 465–481, 2016.

37. Wang, Z., Dong, W., Zhang, W., Tan, C.W., Rumor source detection with multiple observations: Fundamental limits and algorithms. ACM SIGMETRICS Perform. Eval. Rev. , 42, 1, 1–13, 2014.

38. Gross, T., D’Lima, C.J., Blasius, B., Epidemic dynamics on an adaptive network. Phys. Rev. Lett. , 96, 208701, 2006.

39. Watts, D.J. and Strogatz, S.H., Collective dynamics of ‘small-world’ networks. Nature , 393, 6684, 440, 1998.

40. Albert, R., Jeong, H., Barabási, A.L., Error and attack tolerance of complex networks. Nature , 406, 6794, 378–382, 2000.

41. Li, M., Wang, X., Gao, K., Zhang, S., A survey on information diffusion in online social networks: Models and methods. Information , 8, 4, 118, 2017.

42. Nguyen, D.T., Nguyen, N.P., Thai, M.T., Sources of misinformation in Online Social Networks: Who to suspect? MILCOM 2012-2012 IEEE Military Communications Conference , IEEE, pp. 1–6, October., 2012.

43. Klein, D.J., Centrality measure in graphs. J. Math. Chem. , 47, 4, 1209–1223, 2010.

44. Hage, P. and Harary, F., Eccentricity and centrality in networks. Soc. Netw. , 17, 1, 57–63, 1995.

45. Shah, D. and Zaman, T., Rumor centrality: a universal source detector. Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and Modeling of Computer Systems , pp. 199–210, 2012, June.

46. Freeman, L.C., Centrality in social networks conceptual clarification. Soc. Netw. , 1, 3, 215–239, 1978.

47. Louni, A. and Subbalakshmi, K.P., A two-stage algorithm to estimate the source of information diffusion in social media networks. 2014 IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS) , IEEE, pp. 329–333, 2014, April.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Intelligent Data Analytics for Terror Threat Prediction»

Представляем Вашему вниманию похожие книги на «Intelligent Data Analytics for Terror Threat Prediction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Intelligent Data Analytics for Terror Threat Prediction»

Обсуждение, отзывы о книге «Intelligent Data Analytics for Terror Threat Prediction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x