Administrative Records for Survey Methodology

Здесь есть возможность читать онлайн «Administrative Records for Survey Methodology» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Administrative Records for Survey Methodology: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Administrative Records for Survey Methodology»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Addresses the international use of administrative records for large-scale surveys, censuses, and other statistical purposes Administrative Records for Survey Methodology Divided into four sections, the first describes the basics of administrative records research and addresses disclosure limitation and confidentiality protection in linked data. Section two focuses on data quality and linking methodology, covering topics such as quality evaluation, measuring and controlling for non-consent bias, and cleaning and using administrative lists. The third section examines the use of administrative records in surveys and includes case studies of the Swedish register-based census and the administrative records applications used for the US 2020 Census. The book's final section discusses combining administrative and survey data to improve income measurement, enhancing health surveys with data linkage, and other uses of administrative data in evidence-based policymaking. This state-of-the-art resource:
Discusses important administrative data issues and suggests how administrative data can be integrated with more traditional surveys Describes practical uses of administrative records for evidence-driven decisions in both public and private sectors Emphasizes using interdisciplinary methodology and linking administrative records with other data sources Explores techniques to leverage administrative data to improve the survey frame, reduce nonresponse follow-up, assess coverage error, mesaure linkage non-consent bias, and perform small area estimation.
Administrative Records for Survey Methodology

Administrative Records for Survey Methodology — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Administrative Records for Survey Methodology», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The distinction between weighting and imputation can be somewhat blurred when it comes to the adjustment of cross-classified proxy contingency tables, because an adjusted cell count is just the number of individuals with the corresponding cross-classification one would have in an imputed dataset. Take, e.g. a two-way table, where the rows represent population domains at some detailed level, say, by local area and sex-age group, and the columns a composition of interest, say, income class. Let X denote the table based on combining population and tax register data. Let Y (r)denote the known vector of population domain sizes, and let картинка 3denote the survey-based estimates of population totals by income class, which are the row and column benchmarks of the target table Y , respectively. Starting with X and by means of iterative proportional fitting (IPF) until convergence, one may obtain a table картинка 4that sums to both Y (r)and картинка 5marginally. The technique has many applications including small area estimation (Purcell and Kish 1980) and statistical matching (D’Orazio, Di Zio, and Scanu 2006; Zhang 2015a) – more in Section 1.3.2.

A key difference between the asymmetric-linked setting and the asymmetric-unlinked setting discussed above is that, one generally does not expect a benchmarked adjustment method based on unlinked data to yield unbiased results below the level where the benchmarks are imposed. For instance, repeated weighting of Renssen and Nieuwenbroek (1997) can yield design-consistent domain estimates subjected to population benchmark totals, because the overlapping survey variables are both considered as the target measure here and no relevance bias is admitted. However, when the same technique is applied to reweight a register dataset, e.g. with the initial weights all set to 1, one cannot generally claim design or model-based consistency below the level of the imposed benchmarks, regardless of whether the benchmarks themselves are true or unbiased from either the design- or model-based perspective. Similarly, provided suitable assumptions, the one-number census imputation can yield model-consistent estimates below the level of the imposed constraints, because the donor records are taken from the enumerated census records that are considered to provide the target measures. However, the model-consistency would fall apart when the donor pool is a register dataset that suffers from relevance bias, even if all the other “suitable” assumptions are retained. Assessment of the statistical uncertainty associated with benchmarked adjustment is therefore an important research topic. An illustration in the contingency table case will now be given in Section 1.3.2.

1.3.2 Uncertainty Evaluation: A Case of Two-Way Data

Let a = 1, …, A and j = 1, …, J form a two-way classification of interest. For example, a may stand for ethnicity (White, Black, and Others), and j election votes for party (Democratic, Republic, Others). Or, let a be the index of a large number of local areas, and j the different household types such as single-person, couple without children, couple with children, etc. Let X = { X aj} be a known register-based proxy table that is unacceptable as “direct tabulation” of the target table Y = { Y aj}.

For the asymmetric-linked setting, suppose there is available an observed sample two-way classification of ( a , j ). For survey weighting, let s denote the sample and let d i= 1/π ibe the sampling weight of unit is , where π iis the inclusion probability. Let y i( a , j ) = 1 if sample unit is has classification ( a , j ) according to the target measure and y i( a , j ) = 0 otherwise; let x i( a , j ) = 1 if it has classification ( a , j ) according to the proxy measure and x i( a , j ) = 0 otherwise. Post-stratification with respect to X yields then the poststratification weight, say, Administrative Records for Survey Methodology - изображение 6, where Administrative Records for Survey Methodology - изображение 7

This is problematic when there are empty and very small sample cells of ( a , j ). Raking ratio weight can then be given by Administrative Records for Survey Methodology - изображение 8, where картинка 9is derived by the IPF of Administrative Records for Survey Methodology - изображение 10to row and column totals X a+and X +j, respectively. Deville, Särndal, and Sautory (1993) provide approximate variance of the raking ratio estimator, say, Administrative Records for Survey Methodology - изображение 11where A drawback of the weighting approach above is that no estimate of Y ajwill be - фото 12

A drawback of the weighting approach above is that no estimate of Y ajwill be available in the case of empty sample cell ( a , j ), and the estimate will have a large sampling variance when the sample cell ( a , j ) is small in size. This is typically the situation in small area estimation, where, e.g. a is the index of a large number of local areas. Zhang and Chambers (2004) and Luna-Hernández (2016) develop prediction modeling approach.

The within-area composition ( Y a1, Y a2, …, Y aJ) is related to the corresponding proxy composition ( X a1, X a2, …, X aJ) by means of a structural equation

Administrative Records for Survey Methodology - изображение 13

where is the areavector of interactions on the log scale ie where - фото 14is the area-vector of interactions on the log scale, i.e. Administrative Records for Survey Methodology - изображение 15where Administrative Records for Survey Methodology - изображение 16= Administrative Records for Survey Methodology - изображение 17, and similarly for картинка 18, and βa matrix of unknown coefficients that sum to zero by row and by column.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Administrative Records for Survey Methodology»

Представляем Вашему вниманию похожие книги на «Administrative Records for Survey Methodology» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Administrative Records for Survey Methodology»

Обсуждение, отзывы о книге «Administrative Records for Survey Methodology» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x