Engineering Solutions for CO2 Conversion

Здесь есть возможность читать онлайн «Engineering Solutions for CO2 Conversion» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Engineering Solutions for CO2 Conversion: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Engineering Solutions for CO2 Conversion»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive guide that offers a review of the current technologies that tackle CO2 emissions <br> <br> The race to reduce CO2 emissions continues to be an urgent global challenge. «Engineering Solutions for CO2 Conversion» offers a thorough guide to the most current technologies designed to mitigate CO2 emissions ranging from CO2 capture to CO2 utilization approaches. With contributions from an international panel representing a wide range of expertise, this book contains a multidisciplinary toolkit that covers the myriad aspects of CO2 conversion strategies. Comprehensive in scope, it explores the chemical, physical, engineering and economical facets of CO2 conversion. <br> «Engineering Solutions for CO2 Conversion» explores a broad range of topics including linking CFD and process simulations, membranes technologies for efficient CO2 capture-conversion, biogas sweetening technologies, plasma-assisted conversion of CO2, and much more. <br> <br> This important resource: <br> <br> * Addresses a pressing concern of global environmental damage, caused by the greenhouse gases emissions from fossil fuels<br> * Contains a review of the most current developments on the various aspects of CO2 capture and utilization strategies <br> * Incldues information on chemical, physical, engineering and economical facets of CO2 capture and utilization <br> * Offers in-depth insight into materials design, processing characterization, and computer modeling with respect to CO2 capture and conversion <br> <br> Written for catalytic chemists, electrochemists, process engineers, chemical engineers, chemists in industry, photochemists, environmental chemists, theoretical chemists, environmental officers, «Engineering Solutions for CO2 Conversion» provides the most current and expert information on the many aspects and challenges of CO2 conversion.

Engineering Solutions for CO2 Conversion — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Engineering Solutions for CO2 Conversion», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 36Enthalpy and free energy of CO 2and H 2O reduction reactions and - фото 50

Figure 3.6Enthalpy and free energy of CO 2and H 2O reduction reactions and water gas shift reaction (WGSR). The present figure has been taken from the Grave's review.

Source: Graves et al. [102].

If co‐electrolysis is conducted, the WGSR has to be taken into account, and the system becomes more complicated. At temperatures above the zero free energy, reverse water gas shift reaction (RWGSR) is favored. As results, co‐electrolysis is usually run by systems that work at high temperature (solid oxide electrolyzers).

3.5.1.1 Water Electrolysis

The electrolyzer can be depicted as an electrolyte placed between two electrodes (anode and cathode) connected electrically by an external circuit. In most electrolyzers, the electrolyte is an ion‐selective membrane and works due to the electrochemical gradient generated in the cell. The principle of the transport is ascribed to the compensation of charges in the system by charge‐carrying species. For polymeric membranes, a functional group is introduced in the polymer structure to induce the ionic conductivity, whereas in solid oxide materials, defects are generated into the crystalline structure to enhance the O 2−or H +transport.

Electrolyzers can be classified according to the materials used for the cell construction, operation temperature, and charge carriers. Considering the charge carrier in the electrolyte, the main electrolyzers can be divided into three groups:

Hydroxide anion (OH−).○ Alkaline electrolysis cell (AEC): Water is decomposed into hydrogen and HO− at the cathode. The hydroxide anion migrates to the anode, through the electrolyte, generating oxygen. The electrolyte solution consists of a mixture of water and NaOH or KOH. Among the electrolysis technologies, the alkaline electrolysis of water is the most mature technology and a long‐time commercial technology.○ Polymer alkaline electrolyzer cell (PAEC): The main difference with the previous electrolyzer lies in the electrolyte; instead of using a liquid electrolyte, a polymeric membrane with OH− ions conductivity is employed.

Proton (H+).○ Proton exchange membrane electrolysis cell (PEMEC): The two half cells are separated by a polymeric membrane. Protons are generated in the anode and then they pass by the membrane, generating hydrogen in the cathode. Because of the low temperature, expensive noble metals are used generally on both electrodes, the most common is platinum, and high external voltages are required to overcome the reaction kinetics.○ Proton conductor solid oxide electrolyzer cell (PC‐SOEC): All components in the cell are solids and high operation temperatures (600–1000 °C) are required for the cell operation to favor the electronic and/or ionic conductivity of materials. As in the PEM electrolyzers, the protons are generated in the cathode and are recombined in the anode to produce hydrogen. Membrane is based on a proton conductor material.

Oxygen ions (O2−).○ Solid oxide electrolyzer cell (SOEC): Oxygen ions generated in the cathode are conducted toward the anode through an oxygen ion conductor membrane. All components of the cell are solids and work at high operation temperature.

The main components and most common materials for the cell construction of each type of electrolyzer are summarized in Table 3.2.

Despite the fact that SOEC technology is a more mature technology, proton conductor electrolysis cell (PCEC) technology presents the advantage of producing directly dry pressurized H 2and subsequently the need of less separation steps. In addition, operation temperatures are lower (500–700 °C), allowing the reduction of the material cost.

Recently, a study about the first fully operational PCEC has been published [106]. A tubular supported electrolyte made of BaZr 0.7Ce 0.2Y 0.1O 2.95and Ba 1−xGd 0.8La 0.2+xCo 2O 6−δas a steam anode was employed and a hydrogen production above 15 N ml min −1was obtained. In addition, Faradaic efficiencies close to 100% at high steam pressures were observed.

Table 3.2Summary of main characteristics of electrolyzers [103–105].

Source: Adapted from Millet et al. [103], Laguna‐Bercero [104], and Sakai et al. [105].

AEC PAEC PEMEC PC‐SOEC SOEC
Anode Reaction 4OH −→ 2H 2O + O 2+ 4e − 4OH −→ 2H 2O + O 2+ 4e − 2H 2O → 4H ++ O 2+ 4e − 2H 2O → 4H ++ O 2+ 4e −
O 2−→ 1/ 2O 2+ 2e − Materials Ni–Co–Fe, Ni 2CoO 4, La–Sr–CoO 3, Co 3O 4 Ni‐based Ir, Ru oxide BCZY, SCZY La xSr 1−xMnO 3+ Y‐stabilized ZrO 2(YSZ)
Electrolyte Charge carrier OH − OH − H + H + O 2−
Materials Liquid: 25–30 wt% (KOH) aq Solid: polymeric Solid: polymeric Solid: BCZY, BZY, BCY, proton conductors Solid: Y 2O 3–ZrO 2, Sc 2O 3–ZrO 2, MgO–ZrO 2, CaO–ZrO 2
Cathode Reaction 2H 2O + 4e −→ 4OH −+ 2H 2 2H 2O + 4e −→ 4OH −+ 2H 2 4H ++ 4e −→ 2H 2 4H ++ 4e −→ 2H 2 H 2O + 2e −→ O 2−+ H 2
Materials Nickel foam/Ni alloys; Ni–Mo/ZrO 2–TiO 2 Ni, Ni–Fe, NiFe 2O 4 Pt/C, MoS 2 Ni cermets Ni‐YSZ
Operation temperature 20–80 °C 20–200 °C 20–200 °C 600–1000 °C 600–1000 °C

Table 3.3Summary of main features of CO electrolyzers or co‐electrolyzers.

MCEC SOEC PC‐SOEC
Anode Reaction CO 3 2−→ 1/2O 2+ CO 2+ 2e − O 2−→ 1/2O 2+ 2e − 2H 2O → 4H ++ O 2+ 4e −
Materials Nickel based La xSr 1−xMnO 3+ Y‐stabilized ZrO 2(YSZ) BCZY, SCZY
Electrolyte Charge carrier CO 3 2− O 2− H +
Materials Molten carbonates Solid: Y 2O 3–ZrO 2, Sc 2O 3–ZrO 2, MgO–ZrO 2, CaO–ZrO 2 Solid: BCZY, BZY, BCY, proton conductors
Cathode Reaction H 2O + CO 2+ 2e −→ H 2+ CO 3 2−2CO 2+ 2e −→ CO + CO 3 2− H 2O + 2e −→O 2−+ H 2CO 2+ 2e −rarr; CO + O 2− 4H ++ 4e −→ 2H 2CO 2+ 2H ++ 2e −→ CO + H 2O
Materials Nickel‐based Ni‐YSZ Ni cermets
Operation temperature 600–800 °C 600–1000 °C 600–1000 °C

3.5.1.2 CO 2Co‐electrolysis

Electrochemical CO 2reduction has gained importance in the field of energy storage and conversion, and the catalysts and electrolytes influence not only the catalytic activity and selectivity of the reaction, but also on the CO 2reduction mechanism to different species [107].

High temperature is desired for the CO 2electrolysis ( Figure 3.6), and among the electrolysis systems, molten carbonate electrolyzer cells (MCECs), SOEC, and PC‐SOEC are favored for the CO 2direct valorization by electrolysis ( Table 3.3).

Because CO 2, H 2O, and H 2are involved in the reactions, the system is further complicated when the co‐electrolysis takes places, a scheme with all the species and reactions involved is represented in Figure 3.7.

Among the Co‐electrolyzers at high temperatures, solid oxide cells (PC‐SOEC and SOEC) present two main advantages. First, all components in the cells are solids and the risk of liquid leakage is avoided. Secondly, high temperature facilitates the electrolysis because the kinetics and thermodynamics are favored.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Engineering Solutions for CO2 Conversion»

Представляем Вашему вниманию похожие книги на «Engineering Solutions for CO2 Conversion» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Engineering Solutions for CO2 Conversion»

Обсуждение, отзывы о книге «Engineering Solutions for CO2 Conversion» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x