Venkatraman Ramakrishnan - La máquina genética

Здесь есть возможность читать онлайн «Venkatraman Ramakrishnan - La máquina genética» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на испанском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

La máquina genética: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «La máquina genética»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Con su esbelta doble hélice y su enorme capacidad para duplicarse, el ADN es el indiscutible protagonista de la genética. En la delicada sucesión de reacciones químicas que llamamos vida destaca un personaje de reparto, responsable de convertir la información de los genes en proteínas para todo uso: el ribosoma. Esta máquina genética traduce la información del ADN en instrucciones concretas para enhebrar aminoácidos y con ellos crear complejos arreglos proteínicos, esenciales para el desarrollo de cualquier organismo; desentrañar su estructura y su funcionamiento fue uno de los retos más apasionantes en la bioquímica de las últimas décadas. En estas páginas, Venki Ramakrishnan narra las peripecias de su formación científica, desde su natal India hasta su traslado definitivo al Reino Unido; la paulatina construcción de redes científicas en todo el mundo, tanto de colaboración como de acre competencia; el uso de herramientas tecnológicas de vanguardia, como el sincrotrón, para asomarse a las entrañas celulares; la grotesca política que se vive en torno al premio Nobel —que él obtuvo en 2009—. Tenaz y discreto, convencido de que el rigor y la pasión son esenciales para producir conocimiento nuevo, el autor explica con detalle y honestidad cómo triunfó en la carrera por descifrar los secretos del ribosoma. «La honestidad personal de Ramakrishnan respecto de la ambición que lo impulsó se ve matizada por sus profundas reflexiones sobre el efecto potencialmente corruptor de los grandes premios. Un libro que será leído y releído como un documento importante en la historia de la ciencia». Richard Dawkins, autor de «El gen egoísta» «Una obra encantadora y estimulante que arroja luz desde diversos ángulos sobre el mundo de la ciencia, sobre la naturaleza de los descubrimientos y sobre uno de los misterios más profundos de la biología del siglo XX. Muestra más allá de toda duda cuál es el proceso por el que avanza la ciencia». Siddhartha Mukherjee, autor de «El emperador de todos los males»

La máquina genética — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «La máquina genética», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

La relación entre el ángulo y la distancia entre planos se llama ley de Bragg. En cualquier posición dada, puede haber varios planos que satisfacen la condición de Bragg y cada uno da origen a un punto en un ángulo particular relacionado con el haz de rayos X incidente. Al hacer girar el cristal, habrá nuevos planos que satisfagan la condición de Bragg y producirán nuevos puntos. Tras haber girado por completo el cristal en relación con el haz de rayos X, se habrán medido todos los puntos posibles del cristal.

Mediante este análisis, Bragg determinó la disposición correcta de los átomos en el cristal de Von Laue. Envió su análisis a la Cambridge Philosophical Society en noviembre de 1912, pero, puesto que apenas era un estudiante, debió ser su profesor, J. J. Thomson, descubridor del electrón, quien comunicara oficialmente el artículo escrito por Bragg para la revista de la sociedad.

Más adelante, Bragg usó su teoría para analizar una de las moléculas más sencillas, la sal común. Para entonces, los químicos ya habían deducido que una molécula de sal estaba compuesta por la unión de un átomo de sodio y uno de cloro; la llamaron cloruro de sodio. Cuando Bragg analizó los puntos en sus fotografías de rayos X de cristales de sal, descubrió que no existía tal cosa como una molécula de cloruro de sodio. Más bien, el cristal era un tablero de ajedrez tridimensional formado por iones de sodio y de cloro (en los que el átomo de sodio ha perdido un electrón y el átomo de cloro ha ganado uno, de modo que tienen cargas opuestas). Los iones se mantienen en su lugar en el cristal por fuerzas eléctricas.

Muchos químicos de la época no se tomaron muy a bien que un joven estudiante de física les dijera que incluso algo tan sencillo como la sal no era como pensaban. Uno de ellos, Henry Armstrong, profesor de química del Imperial College de Londres, se ensañó con Bragg en una carta a la revista Nature titulada “Pobre sal común”, en la que sostenía que la estructura del cloruro de sodio propuesta por Bragg era “más que repugnante para el sentido común”. Y añadía el que posiblemente constituya el peor insulto para un británico: “Es absurdo a la n potencia; no es críquet químico.” Al final, no sólo resultó que Bragg tenía razón sino que también determinaría la estructura de muchas otras moléculas simples. Por primera vez era posible “ver” moléculas. Este método para determinar la estructura tridimensional de los átomos en una molécula, luego de obligarlo a formar cristales y de analizar los puntos de difracción, sería conocido como cristalografía de rayos X.

El padre de Bragg, William Bragg (en realidad ambos se llamaban William, así que el hijo usaba su segundo nombre: Lawrence), era profesor de física y desarrolló algunos de los instrumentos más avanzados de su época para medir con precisión los puntos de rayos X. Tras desarrollar la teoría, Bragg trabajó con su padre en varios experimentos. El hijo permaneció en Cambridge y el padre, que ya era un físico famoso, viajó por todo el mundo para dar conferencias sobre su trabajo con “su muchacho”. Durante un tiempo, a Bragg le preocupó que, puesto que apenas era un estudiante, su famoso padre se llevara todo el crédito y al parecer hubo algunas tensiones entre ellos. Pero resulta que alguien en el comité del Nobel estaba muy bien informado. En 1915, ambos Bragg compartieron el premio Nobel de Física por su trabajo. Bragg, que entonces tenía 25 años, sigue siendo el galardonado más joven de este premio, pero no pudo ir a Estocolmo a recibirlo porque acababa de comenzar la primera Guerra Mundial. De hecho, el hermano de Bragg, Robert, murió en combate unas semanas antes de que supieran del premio. Bragg leyó su discurso de aceptación en 1922.

Las moléculas simples que Bragg había estudiado al principio sólo tenían unos pocos átomos, así que era posible conjeturar distintas estructuras y comprobar si los puntos que predecía la ley de Bragg coincidían con lo que mostraban las fotografías. Pero estas suposiciones se hicieron cada vez más difíciles conforme se estudiaban moléculas más grandes, con muchos más átomos. Se necesitaba un nuevo enfoque. ¿Era posible calcular en forma directa, a partir de los datos de rayos X, una imagen o “mapa” de la molécula que mostrara exactamente dónde estaban los átomos?

Para entender cómo se calcula un mapa, imagínate cómo se obtiene una imagen magnificada con ayuda de una lente. A partir de cada parte del objeto se dispersan rayos de luz. Cada punto de la imagen se produce cuando la lente combina las ondas dispersadas a partir de cada punto del objeto. Lo importante es que los rayos se dispersan, exista la lente o no: ésta sencillamente los reúne para formar una imagen. Hemos discutido que la longitud de onda de la luz es casi mil veces más grande que lo necesario para ver átomos en una molécula. Los rayos X, por su lado, tienen la longitud de onda correcta. ¿No era posible usar rayos X con una lente para ver imágenes de las moléculas directamente sin tener que batallar con cristales y puntos?

FIGURA 34 Comparación de la formación de imágenes con una lente y con - фото 16

FIGURA 3.4. Comparación de la formación de imágenes con una lente y con cristalografía de rayos X.

El problema es que no existe una lente lo suficientemente buena como para obtener imágenes de moléculas con rayos X. Pero, incluso si fuera posible, se interpone un serio problema, porque a diferencia de la luz los rayos X degradan las moléculas a las que golpean. Para ver una molécula individual con suficiente detalle, habría que exponerla a una dosis tan alta de rayos X que terminaría destruyéndola. En un cristal, sin embargo, los puntos de difracción son resultado de sumar los rayos X dispersados por millones de moléculas. La señal amplificada de estos millones de moléculas permite usar una dosis mucho menor y ésa es otra razón importante para emplear cristales.

Sin una lente para rayos X, hubo que inventar formas ingeniosas de hacer matemáticamente el trabajo de la lente: combinar ondas prove-nientes de diferentes partes del objeto en una sola imagen (para quienes tienen un talante matemático, se trata de calcular la transformada de Fourier de los rayos dispersados). Pero tomar sin más los puntos medidos en una fotografía de rayos X y combinarlos en una computadora para formar una imagen tenía un grave inconveniente. Una lente “sabe” cuándo llega cada parte de una onda al recombinarla con las demás. En otras palabras, la lente conoce la fase, o la posición relativa de las crestas y los valles de cada una de las ondas que tiene que sumar. Cuando medimos la intensidad de un punto de difracción de rayos X en un cristal, lo que estamos midiendo es la amplitud de onda, en otras palabras, la altura de su cresta sobre su posición promedio. La medición no posee ninguna información sobre la fase de la onda, es decir, cuán adelantada o retrasada está la cima de la onda en relación con todas las demás ondas para cada punto. Para sumar las ondas correspondientes a todos los puntos se necesitan ambos datos, pero las mediciones sólo contienen la mitad. Para empeorar las cosas, lo que tenemos es la mitad menos importante, porque la imagen es mucho más sensible a la fase correcta que a la amplitud correcta. Este irritante inconveniente se conoce en cristalografía como el problema de las fases. Sin conocer las fases no podría obtenerse la imagen de la estructura.

Al cristalógrafo Arthur Lindo Patterson se le ocurrió una forma de resolver este problema cuando se dio cuenta de que incluso sin las fases es posible emplear la medición de las intensidades de los puntos para calcular una función que permita situar los átomos más prominentes en la estructura, que suelen ser los átomos más pesados (porque tienen más electrones y dispersan más los rayos X). Entonces se pueden calcular las fases que sólo estos átomos producirían y combinarlas con las amplitudes medidas en toda la molécula. Al hacerlo, algunos de los átomos faltantes —los que no son parte de los primeros pocos átomos calculados— aparecerán como datos más débiles o “fantasma” en la imagen de la estructura. Al sumar esos átomos a la estructura original y volver a hacer el cálculo, aparecerán aún más átomos fantasma en la nueva iteración. Así se puede ir llevando el proceso hasta calcular la estructura completa.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «La máquina genética»

Представляем Вашему вниманию похожие книги на «La máquina genética» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «La máquina genética»

Обсуждение, отзывы о книге «La máquina genética» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x