4 (iv) Highly efficient catalysts to minimize energy usage for the valorization of CO2.
In addition, critical evaluation from an LCA perspective will be necessary.
In any case, the spread and expansion of renewable energy are essential, which, in turn, require energy storage and transport. CO 2‐based fuels produced by CO 2hydrogenation will contribute to these needs. Therefore, further research into CO 2hydrogenation is necessary from a standpoint of both fundamental science and application. In this respect, we believe the focus of this book on the hydrogenation/electroreduction of CO 2to formic acid and methanol as chemicals and fuels using homogeneous and heterogeneous catalysts will be of interest to many scientists. It will serve as motivation for studying the development of catalysts for the hydrogenation of CO 2as a fuel and bulk chemical. In addition, the challenge of activating unreactive CO 2will stimulate the curiosity and creativity of chemists.
1 1 IEA. (2019). Global energy & CO2 status report 2019. The latest trends in energy and emissions in 2018. https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions#abstract(accessed 8 September 2020).
2 2 National Oceanic and Atmospheric Administration. Global Monitoring Laboratory. https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html(accessed 5 June 2020).
3 3 Kristin Onarheim, Antti Arasto (2017). Market‐driven future potential of Bio‐CC(U)S, http://task41project5.ieabioenergy.com/publications/market-driven-future-potential-bio-ccus/(accessed 5 June 2020).
4 4 Rogelj, J., Huppmann, D., Krey, V. et al. (2019). Nature 573 (7774): 357–363.
5 5 IEA. (2019) Putting CO2 to use – Creating value from emissions. https://www.iea.org/reports/putting-co2-to-use(accessed 8 September 2020).
6 6 Omae, I. (2012). Coord. Chem. Rev. 256 (13): 1384–1405.
7 7 Short‐Term Fertilizer Outlook 2019–2020. (2019). https://www.ifastat.org/market-outlooks(accessed 16 June 2020).
8 8 Fukuoka, S., Fukawa, I., Adachi, T. et al. (2019). Org. Process Res. Dev. 23 (2): 145–169.
9 9 Carbon Recycling International. https://www.carbonrecycling.is/(accessed 17 June 2020).
10 10 2018–2023 Global Formic Acid Consumption Market Report. (2018). https://www.marketinsightsreports.com/reports/1120988312/2018-2023-global-formic-acid-consumption-market-report(accessed 12 June 2020).
11 11 Hietala, J., Vuori, A., Johnsson, P. et al. (2016). Formic Acid. In: Ullmann's Encyclopedia of Industrial Chemistry, 1–22. Wiley‐VCH.
12 12 Perez‐Fortes, M., Schoneberger, J.C., Boulamanti, A. et al. (2016). Int. J. Hydrogen Energy 41 (37): 16444–16462.
13 13 Sordakis, K., Tang, C.H., Vogt, L.K. et al. (2018). Chem. Rev. 118 (2): 372–433.
14 14 Wang, W.‐H., Himeda, Y., Muckerman, J.T. et al. (2015). Chem. Rev. 115 (23): 12936–12973.
15 15 Müller, K., Brooks, K., and Autrey, T. (2018). Energy Fuels 32 (9): 10008–10015.
16 16 Global methanol demand (Methanol Institute). https://www.methanol.org/methanol-price-supply-demand/(accessed 15 June 2020).
17 17 Dalena, F., Senatore, A., Marino, A. et al. (2018). Chapter 1. Methanol production and applications: an overview. In: Methanol (eds. A. Basile and F. Dalena), 3–28. Elsevier.
18 18 DECHEMA. (2017). Low carbon energy and feedstock for the European chemical industry. https://dechema.de/Low_carbon_chemical_industry.html(accessed 8 September 2020).
19 19 Chang, C.D. and Silvestri, A.J. (1977). J. Catal. 47 (2): 249–259.
20 20 Production capacity, production and demand on petrochemical products. (2019). Ministry of Economy, Trade and Industry of Japan. https://www.meti.go.jp/policy/mono_info_service/mono/chemistry/downloadfiles/04_2019syouhinbetudeta.pdf(accessed 16 June 2020).
21 21 Market Analytics: Methanol and Derivatives (2019). https://www.nexantsubscriptions.com/reports/market-analytics-methanol-and-derivatives-2019(accessed 13 June 2020).
22 22 Olah, G.A. (2005). Angew. Chem. Int. Ed. 44 (18): 2636–2639.
23 23 Asinger, F. (1986). Methanol—Chemie‐ und Eneigierohstoff. Berlin Heidelberg: Springer‐Verlag.
24 24 Olah, G.A., Goeppert, A., and Prakash, G.K.S. (2018). Beyond Oil and Gas: The Methanol Economy, 3e. Wiley‐VCH.
25 25 Bailera, M., Lisbona, P., Romeo, L.M. et al. (2017). Renewable Sustainable Energy Rev. 69: 292–312.
26 26 The first industrial PtG plant–Audi e‐gas as driver for the energy turnaround. (2014). http://www.cedec.com/files/default/8-2014-05-27-cedec-gas-day-reinhard-otten-audi-ag.pdf(accessed 10 June 2020).
27 27 Jarvis, S.M. and Samsatli, S. (2018). Renewable Sustainable Energy Rev. 85: 46–68.
28 28 Capturing and Utilizing CO2 from Ethanol: Adding Economic Value and Jobs to Rural Economies and Communities While Reducing Emissions (2017). http://www.kgs.ku.edu/PRS/ICKan/2018/March/WhitePaper_EthanolCO2Capture_Dec2017_Final2.pdf(accessed 10 June 2020).
29 29 Greenhouse Gas Inventory Data. https://di.unfccc.int/detailed_data_by_party(accessed 12 June 2020).
30 30 Xu, Y., Isom, L., and Hanna, M.A. (2010). Bioresour. Technol. 101 (10): 3311–3319.
31 31 Bosoaga, A., Masek, O., and Oakey, J.E. (2009). Energy Proc. 1 (1): 133–140.
32 32 CO2 Emissions from Fuel Combustion (2019). https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics(accessed 12 June 2020).
33 33 Styring, P. (2015). Carbon dioxide capture agents and processes (Chapter 2). In: Carbon Dioxide Utilisation: Closing the Carbon Cycle (eds. P. Styring, E.A. Quadrelli and K. Armstrong), 19–32. Elsevier.
34 34 Shell Cansolv Deploying CCS Worldwide. (2013). https://ieaghg.org/docs/General_Docs/PCCC2/Secured%20pdfs/3_PCCC2-Just-September2013.pdf(accessed 16 June 2020).
35 35 Survey on the Carbon Capture and Storage process (2017). Center for Low Carbon Society Strategy, Japan Science and Technology Agency. https://www.jst.go.jp/lcs/pdf/fy2016-pp-06.pdf(accessed 16 June 2020).
36 36 Sanz‐Perez, E.S., Murdock, C.R., Didas, S.A. et al. (2016). Chem. Rev. 116 (19): 11840–11876.
37 37 Direct Air Capture (2020). https://www.iea.org/reports/direct-air-capture(accessed 18 September 2020).
38 38 Explore energy data by category, indicator, country or region (IEA). https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Low-carbon%20electricity%20generation%20by%20source(accessed 13 June 2020).
39 39 Lazard's Levelized Cost of Energy Analysis (2018). https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdf(accessed 12 June 2020).
40 40 Alvarez, A., Bansode, A., Urakawa, A. et al. (2017). Chem. Rev. 117 (14): 9804–9838.
41 41 IEA. (2019). The Future of Hydrogen – Seizing today’s opportunities. https://www.iea.org/reports/the-future-of-hydrogen(accessed 7 September 2020).
42 42 Status of carbon taxes in various countries (2017). https://www.env.go.jp/policy/tax/misc_jokyo/attach/intro_situation.pdf(accessed 12 June 2020).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.