Jakob J. Zyl - Introduction to the Physics and Techniques of Remote Sensing

Здесь есть возможность читать онлайн «Jakob J. Zyl - Introduction to the Physics and Techniques of Remote Sensing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to the Physics and Techniques of Remote Sensing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to the Physics and Techniques of Remote Sensing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover cutting edge theory and applications of modern remote sensing in geology, oceanography, atmospheric science, ionospheric studies, and more  The thoroughly revised third edition of the 
delivers a comprehensive update to the authoritative textbook, offering readers new sections on radar interferometry, radar stereo, and planetary radar. It explores new techniques in imaging spectroscopy and large optics used in Earth orbiting, planetary, and astrophysics missions. It also describes remote sensing instruments on, as well as data acquired with, the most recent Earth and space missions. 
Readers will benefit from the brand new and up-to-date concept examples and full-color photography, 50% of which is new to the series. You’ll learn about the basic physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum (from ultraviolet to microwave), and the concepts behind the remote sensing techniques used today and those planned for the future. 
The book also discusses the applications of remote sensing for a wide variety of earth and planetary atmosphere and surface sciences, like geology, oceanography, resource observation, atmospheric sciences, and ionospheric studies. This new edition also incorporates: 
A fulsome introduction to the nature and properties of electromagnetic waves An exploration of sensing solid surfaces in the visible and near infrared spectrums, as well as thermal infrared, microwave, and radio frequencies A treatment of ocean surface sensing, including ocean surface imaging and the mapping of ocean topography A discussion of the basic principles of atmospheric sensing and radiative transfer, including the radiative transfer equation Perfect for senior undergraduate and graduate students in the field of remote sensing instrument development, data analysis, and data utilization, 
 will also earn a place in the libraries of students, faculty, researchers, engineers, and practitioners in fields like aerospace, electrical engineering, and astronomy.

Introduction to the Physics and Techniques of Remote Sensing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to the Physics and Techniques of Remote Sensing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The wave absorption is a result of the fact that usually N i> N j. If this inequality can be reversed, the wave would be amplified. This requires that the population in the higher level is larger than the population in the lower energy level. This population inversion is the basis behind laser and maser operations. However, it is not usually encountered in the cases of natural matter/waves interactions which form the topic of this text. ( Note: Natural maser effects have been observed in astronomical objects; however, these are beyond the scope of this text.)

The transition between different levels in usually characterized by the lifetime τ . The lifetime of an excited state i is equal to the time period after which the number of excited atoms in this state have been reduced by a factor e −1. If the rate of transition out of the state i is A i, the corresponding lifetime can be derived from the following relations:

(2.46) Introduction to the Physics and Techniques of Remote Sensing - изображение 99

(2.47) Introduction to the Physics and Techniques of Remote Sensing - изображение 100

(2.48) Introduction to the Physics and Techniques of Remote Sensing - изображение 101

If the transitions from i occur to a variety of lower levels j , then

(2.49) Introduction to the Physics and Techniques of Remote Sensing - изображение 102

(2.50) Introduction to the Physics and Techniques of Remote Sensing - изображение 103

2.6 Interaction Mechanisms Throughout the Electromagnetic Spectrum

Starting by the highest spectral region used in remote sensing, gamma‐ and x‐ray interactions with matter call into play atomic and electronic forces such as the photoelectric effect (absorption of photon with ejection of electron), Compton effect (absorption of photon with ejection of electron and radiation of lower energy photon), and pair production effect (absorption of photon and generation of an electron–positron pair). The photon energy in this spectral region is larger than 40 eV ( Fig. 2.15). This spectral region is used mainly to sense the presence of radioactive materials.

In the ultraviolet region (photon energy between 3 and 40 eV), the interactions call into play electronic excitation and transfer mechanisms, with their associated spectral bands. This spectral region is used mostly for remote sensing of the composition of the upper layers of the Earth and planetary atmospheres. An ultraviolet spectrometer was flown on Voyager spacecraft to determine the composition and structure of the upper atmospheres of Jupiter, Saturn, and Uranus.

In the visible and near infrared (energy between 0.2 and 3 eV), vibrational and electronic energy transitions play the key role. In the case of gases, these interactions usually occur at well‐defined spectral lines, which are broadened due to the gas pressure and temperature. In the case of solids, the closeness of the atoms in the crystalline structure leads to a wide variety of energy transfer phenomena with broad interaction bands. These include molecular vibration, ionic vibration, crystal field effects, charge transfer, and electronic conduction. Some of the most important solid surface spectral features in this wavelength region include the following: (1) the steep fall‐off of reflectance in the visible toward the ultraviolet and an absorption band between 0.84 and 0.92 μm associated with the Fe 3+electronic transition. These features are characteristic of iron oxides and hydrous iron oxides, collectively referred to as limonite. (2) The sharp variation of chlorophyll reflectivity in the neighborhood of 0.75 μm, which has been extensively used in vegetation remote sensing. (3) The fundamental and overtone bending/stretching vibration of hydroxyl (OH) bearing materials in the 2.1–2.8 μm region, which are being used to identify clay‐rich areas associated with hydrothermal alteration zones.

In the mid‐infrared region (8–14 μm), the Si‐O fundamental stretching vibration provides diagnostics of the major types of silicates ( Fig. 2.16). The position of the restrahlen bands, or regions of metallic‐like reflection, is dependent on the extent of interconnection of the Si‐O tetrahedra comprising the crystal lattice. This spectral region also corresponds to vibrational excitation in atmospheric gaseous constituents.

In the thermal infrared, the emissions from the Earth’s and other planets’ surfaces and atmospheres are strongly dependent on the local temperature, and the resulting radiation is governed by Planck’s law. This spectral region provides information about the temperature and heat constant of the object under observation. In addition, a number of vibrational bands provide diagnostic information about the emitting object constituents.

Figure 215 Correspondence of spectral bands and photon energy and range of - фото 104

Figure 2.15 Correspondence of spectral bands and photon energy and range of different wave–matter interaction mechanisms of importance in remote sensing. The photon energy in electron volts is given by E (eV) = 1.24/ λ , where λ is in μm.

In the submillimeter region, a large number of rotational bands provide information about the atmospheric constituents. These bands occur all across this spectral region, making most planetary atmospheres completely opaque for surface observation. For some gases such as water vapor and oxygen, the rotational band extends into the upper regions of the microwave spectrum.

The interaction mechanisms in the lower frequency end of the spectrum ( ν < 20 GHz, λ > 1.5 cm) do not correspond to energy bands of specific constituents. They are rather collective interactions which result from electronic conduction and nonresonant magnetic and electric multipolar effects. As a wave interacts with a simple molecule, the resulting displacement of the electrons results in the formation of an oscillating dipole which generates an electromagnetic field. This will result in a composite field moving at a lower speed than the speed of light in a vacuum. The effect of the medium is described by the index of refraction or the dielectric constant. In general, depending on the structure and composition of the medium, the dielectric constant could be anisotropic or could have a loss term which is a result of wave energy transformation into heat energy.

In the case of an interface between two media, the wave is reflected or scattered depending on the geometric shape of the interface. The physical properties of the interface and the dielectric properties of the two media are usually the major factors affecting the interaction of wave and matter in the microwave and radio frequency part of the spectrum. Thus, remote sensing in this region of the spectrum will mainly provide information about the physical and electrical properties of the object instead of its chemical properties, which are the major factors in the visible/infrared region, and its thermal properties, which are the major factors in the thermal infrared and upper microwave regions (see Table 2.2).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to the Physics and Techniques of Remote Sensing»

Представляем Вашему вниманию похожие книги на «Introduction to the Physics and Techniques of Remote Sensing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to the Physics and Techniques of Remote Sensing»

Обсуждение, отзывы о книге «Introduction to the Physics and Techniques of Remote Sensing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x