Systematics and the Exploration of Life
Здесь есть возможность читать онлайн «Systematics and the Exploration of Life» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Systematics and the Exploration of Life
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Systematics and the Exploration of Life: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Systematics and the Exploration of Life»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Systematics and the Exploration of Life — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Systematics and the Exploration of Life», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
1.9. References
Adams, D.C., Rohlf, F.J., and Slice, D.E. (2004). Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology , 71, 5–16.
Arthur, W. (2006). D’Arcy Thompson and the theory of transformations. Nature Reviews Genetics , 7, 401–406.
Bookstein, F.L. (1978). The Measurement of Biological Shape and Shape Change . Springer, New York.
Bookstein, F.L. (1989). Principal warps: Thin-plate splines and the decomposition of deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence , 11, 567–585.
Bookstein, F.L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology . Cambridge University Press, Cambridge.
Bookstein, F.L. (1996). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology , 58, 313–365.
Briscoe, J. and Kicheva, A. (2017). The physics of development 100 years after D’Arcy Thompson’s “On Growth and Form”. Mechanisms of Development , 145, 26–31.
Chaplain, M.A.J., Singh, G.D., and McLachlan, J.C. (1999). On Growth and Form: Spatio-temporal Pattern Formation in Biology . John Wiley & Sons, New York.
Citerne, H., Jabbour, F., Nadot, S., and Damerval, C. (2010). The evolution of floral symmetry. Advances in Botanical Research , 54, 85–137.
Coxeter, H.S.M. (1969). Introduction to Geometry . John Wiley & Sons, New York.
Dryden, I.L. and Mardia, K.V. (1998). Statistical Shape Analysis . John Wiley & Sons, New York.
Gómez, J.M. and Perfectti, F. (2010). Evolution of complex traits: The case of Erysimum corolla shape. International Journal of Plant Sciences , 171, 987–998.
Gould, S.J. (1971). D’Arcy Thompson and the science of form. New Literary History , 2, 229–258.
Gould, S.J. (2002). The Structure of Evolutionary Theory . Harvard University Press, Cambridge.
Graham, J.H., Freeman, D.C., and Emlen, J.M. (1993). Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica , 89, 121–137.
Haeckel, E. (1904). Kunstformen der Natur . Bibliographischen Instituts, Leipzig.
Keller, E.F. (2018). Physics in biology – Has D’Arcy Thompson been vindicated? The Mathematical Intelligencer , 40, 33–38.
Kendall, D.G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society , 16, 81–121.
Klingenberg, C.P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics , 39, 115–132.
Klingenberg, C.P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry , 7, 843–934.
Klingenberg, C.P. and McIntyre, G.S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution , 52, 1363–1375.
Klingenberg, C.P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution , 56, 1909–1920.
Kolamunnage, R. and Kent, J.T. (2003). Principal component analysis for shape variation about an underlying symmetric shape. In Stochastic Geometry, Biological Structure and Images , Aykroyd, R.G., Mardia, K.V., and Langdon, M.J. (eds). Leeds University Press, Leeds, 137–139.
Kolamunnage, R. and Kent, J.T. (2005). Decomposing departures from bilateral symmetry. In Quantitative Biology, Shape Analysis, and Wavelets , Barber, S., Baxter, P.D., Mardia, K.V., and Walls, R.E. (eds). Leeds University Press, Leeds, 75–78.
Leamy, L. (1984). Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. The American Naturalist , 123, 579–593.
Leamy, L., Klingenberg, C., Sherratt, E., Wolf, J., and Cheverud, J. (2015). The genetic architecture of fluctuating asymmetry of mandible size and shape in a population of mice: Another look. Symmetry , 7, 146–163.
Ludwig, W. (1932). Das Rechts-Links Problem im Tierreich und beim Menschen . Springer, Berlin.
Mardia, K.V., Bookstein, F.L., and Moreton, I.J. (2000). Statistical assessment of bilateral symmetry of shapes. Biometrika , 285–300.
Mardia, K.V., Bookstein, F.L., Khmabay, B.S., and Kent, J.T. (2018). Deformations and smile: 100 years of D’Arcy Thompson’s “On Growth and Form”. Significance , 15, 20–25.
Medawar, P.B. (1944). The shape of a human being as a function of time. Proceedings of the Royal Society, Series B , 132, 133–141.
Medawar, P.B. (1962). D’Arcy Thompson and growth and form. Perspectives in Biology and Medicine , 220–232.
Neustupa, J. (2013). Patterns of symmetric and asymmetric morphological variation in unicellular green microalgae of the genus Micrasterias (Desmidiales, Viridiplantae). Fottea , 13, 53–63.
Palmer, A.R. (1996). Waltzing with asymmetry. Bioscience , 46, 518–532.
Palmer, A.R. (2004). Symmetry breaking and the evolution of development. Science , 306, 828–833.
Palmer, A.R. and Strobeck, C. (1986). Fluctuating asymmetry: Measurement, analysis, patterns. Annual Review of Ecology and Systematics , 17, 391–421.
Rees, E.G. (2000). Notes on Geometry . Springer, Berlin.
Rohlf, F.J., Marcus, L.F. (1993). A revolution in morphometrics. Trends in Ecology and Evolution , 8, 129–132.
Savriama, Y. (2018). A step-by-step guide for geometric morphometrics of floral symmetry. Frontiers in Plant Science , 9, 1433.
Savriama, Y. and Gerber, S. (2018). Geometric morphometrics of nested symmetries unravels hierarchical inter-and intra-individual variation in biological shapes. Scientific Reports , 8, 18055.
Savriama, Y. and Klingenberg, C.P. (2011). Beyond bilateral symmetry: Geometric morphometric methods for any type of symmetry. BMC Evolutionary Biology , 11, 280.
Savriama, Y., Vitulo, M., Gerber, S., Debat, V., and Fusco, G. (2016). Modularity and developmental stability in segmented animals: Variation in translational asymmetry in geophilomorph centipedes. Development Genes and Evolution , 226, 187–196.
Sneath, P.H.A. (1967). Trend surface analysis of transformation grids. Journal of Zoology , 151, 65–122.
Thompson, D.W. (1917). On Growth and Form . Cambridge University Press, Cambridge.
Chapter written by Sylvain GERBER and Yoland SAVRIAMA.
2
Impact of a Point Mutation in a Protein Structure
2.1. Composition
Proteins are involved in most cellular functions at all levels, from DNA duplication to chemical metabolism, cell structuring and signal transmission. Despite their very varied activities, these molecules are quite homogeneous: proteins 1 are polymers composed of 20 base units, the amino acids (or residues when polymerized). The latter are composed of a central carbon atom (Cα) linked to an amino group (NH 2), a carboxylic group (COOH), a hydrogen atom and one of 20 different chemical groups called “side chains” ( Figure 2.1). Residues and their different chemical functions allow the functional diversity of proteins. In the polypeptide chain, the α-carboxylic group of an amino acid is linked to the α-amino group of the next amino acid through an amide bond (peptide bond −CO−NH−, Figure 2.2). Most natural proteins contain between 50 and 2,000 amino acid residues. The unbranched chain of residues is oriented: it starts at the amino end (N-terminal) and ends at the carboxy end (C-terminal). The chain of atoms regularly repeating the peptide bonds is called the “peptide backbone”. The peptide bond is rigid and flat because of the partial double bond character of the −CO−NH− bond, but rotations are possible around the other bonds of the backbone.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Systematics and the Exploration of Life»
Представляем Вашему вниманию похожие книги на «Systematics and the Exploration of Life» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Systematics and the Exploration of Life» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.