245 Strachan, L., Panasyuk, A.V., Dobrzycka, D. et al. (2000, February). Latitudinal dependence of outflow velocities from O VI Doppler dimming observations during the Whole Sun Month. Journal of Geophysical Research: Space Physics 105: 2345–2356. https://doi.org/10.1029/1999JA900459.
246 Štverák, S., Travnicek, P., Maksimovic, M. et al. (2008, March). Electron temperature anisotropy constraints in the solar wind. Journal of Geophysical Research: Space Physics 113: A03103. https://doi.org/10.1029/2007JA012733.
247 Susino, R., Ventura, R., Spadaro, D. et al. (2008, September). Physical parameters along the boundaries of a mid‐latitude streamer and in its adjacent regions. Astronomy & Astrophysics (A&A) 488: 303–310. https://doi.org/10.1051/0004‐6361:200809713.
248 Telloni, D., Antonucci, E., & Dodero, M. A. (2007, September). Outflow velocity of the O+5 ions in polar coronal holes out to 5 R. Astronomy & Astrophysics (A&A), 472, 299–307. doi: 10.1051/ 0004‐6361:20077083.
249 Teriaca, L., Poletto, G., Romoli, M., and Biesecker, D.A. (2003, May). The nascent solar wind: Origin and acceleration. The Astrophysical Journal 588: 566–577. https://doi.org/10.1086/368409.
250 Thieme, K.M., Marsch, E., and Schwenn, R. (1990, November). Spatial structures in high‐speed streams as signatures of fine structures in coronal holes. Annales Geophysicae 8: 713–723.
251 Thieme, K.M., Schwenn, R., and Marsch, E. (1989). Are structures in high‐speed streams signatures of coronal fine structures? Advances in Space Research 9: 127–130. https://doi.org/10.1016/0273‐1177(89)90105‐1.
252 Tian, H., Yao, S., Zong, Q. et al. (2010, September). Signatures of magnetic reconnection at boundaries of interplanetary small‐scale magnetic flux ropes. The Astrophysical Journal 720: 454–464. https://doi.org/10.1088/0004‐637X/720/1/454.
253 Titov, V.S., Forbes, T.G., Priest, E.R. et al. (2009, March). Slip‐squashing factors as a measure of three‐dimensional magnetic reconnection. The Astrophysical Journal 693: 1029–1044. https://doi.org/10.1088/0004‐637X/693/1/1029.
254 Titov, V.S., Mikić, Z., Linker, J.A. et al. (2011, April). Magnetic topology of coronal hole linkages. The Astrophysical Journal 731: 111. https://doi.org/10.1088/0004‐637X/731/2/111.
255 Tomczyk, S., Landi, E., Burkepile, J.T. et al. (2016, August). Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory. Journal of Geophysical Research: Space Physics 121: 7470–7487. https://doi.org/10.1002/2016JA022871.
256 Török, T., Aulanier, G., Schmieder, B. et al. (2009, October). Fan‐spine topology formation through two‐step reconnection driven by twisted flux emergence. The Astrophysical Journal 704: 485–495. https://doi.org/10.1088/0004‐637X/704/1/485.
257 Tu, C.‐Y., & Marsch, E. (1995, July). Comment on “Evolution of energy‐containing turbulent eddies in the solar wind” by W. H. Matthaeus, S. Oughton, D. H. Pontius, Jr., and Y. Zhou. Journal of Geophysical Research, 100, 12323–12328. doi: https://doi.org/10.1029/95JA01103.
258 Tu, C.‐Y. and Marsch, E. (1997, April). Two‐fluid model for heating of the solar corona and acceleration of the solar wind by high‐frequency Alfven waves. Solar Physics 171: 363–391. https://doi.org/10.1023/A:1004968327196.
259 Turner, A.J., Gogoberidze, G., Chapman, S.C. et al. (2011, August). Nonaxisymmetric anisotropy of solar wind turbulence. Physical Review Letters 107 (9): 095002. https://doi.org/10.1103/PhysRevLett.107.095002.
260 van der Holst, B., Sokolov, I.V., Meng, X. et al. (2014, February). Alfvén Wave Solar Model (AWSoM): coronal heating. The Astrophysical Journal 782: 81. https://doi.org/10.1088/0004‐637X/782/2/81.
261 Vasyliunas, V.M. and Siscoe, G.L. (1976, March). On the flux and the energy spectrum of interstellar ions in the solar system. Journal of Geophysical Research 81: 1247–1252. https://doi.org/10.1029/JA081i007p01247.
262 Velli, M., Grappin, R., and Mangeney, A. (1989, October). Turbulent cascade of incompressible unidirectional Alfven waves in the interplanetary medium. Physical Review Letters 63: 1807–1810. https://doi.org/10.1103/PhysRevLett.63.1807.
263 Velli, M., Lionello, R., Linker, J.A., and Mikić, Z. (2011, July). Coronal plumes in the fast solar wind. The Astrophysical Journal 736: 32. https://doi.org/10.1088/0004‐637X/736/1/32.
264 Verdini, A., Grappin, R., Pinto, R., and Velli, M. (2012, May). On the origin of the 1/f spectrum in the solar wind magnetic field. The Astrophysical Journal Letters 750: L33. https://doi.org/10.1088/2041 ‐8205/750/2/L33.
265 Viall, N.M., Kepko, L., and Spence, H.E. (2008, July). Inherent length‐scales of periodic solar wind number density structures. Journal of Geophysical Research: Space Physics 113: A07101. https://doi.org/10.1029/2007JA012881.
266 Viall, N.M., Kepko, L., and Spence, H.E. (2009, January). Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. Journal of Geophysical Research: Space Physics 114: A01201. https://doi.org/10.1029/2008JA013334.
267 Viall, N.M., Spence, H.E., and Kasper, J. (2009, December). Are periodic solar wind number density structures formed in the solar corona? Geophysical Research Letters 36: L23102. https://doi.org/10.1029/2009GL041191.
268 Viall, N.M., Spence, H.E., Vourlidas, A., and Howard, R. (2010, November). Examining periodic solar‐wind density structures observed in the SECCHI heliospheric imagers. Solar Physics 267: 175–202. https://doi.org/10.1007/s11207‐010‐9633‐1.
269 Viall, N. M., & Vourlidas, A. (2015, July). Periodic density structures and the origin of the slow solar wind. The Astrophysical Journal, 807, 176. doi: 10 .1088/0004‐637X/807/2/176.
270 Villante, U., Del Corpo, A., and Francia, P. (2013, January). Geomagnetic and solar wind fluctuations at discrete frequencies: A case study. Journal of Geophysical Research: Space Physics 118: 218–231. https://doi.org/10.1029/2012JA017971.
271 Villante, U., Di Matteo, S., and Piersanti, M. (2016, January). On the transmission of waves at discrete frequencies from the solar wind to the magnetosphere and ground: A case study. Journal of Geophysical Research: Space Physics 121: 380–396. https://doi.org/10.1002/2015JA021628.
272 Vocks, C. (2012, November). Kinetic models for whistler wave scattering of electrons in the solar corona and wind. Space Science Reviews 172: 303–314. https://doi.org/10.1007/s11214‐011‐9749‐0.
273 Vocks, C. and Mann, G. (2003, August). Generation of suprathermal electrons by resonant wave‐particle interaction in the solar corona and wind. The Astrophysical Journal 593: 1134–1145. https://doi.org/10.1086/376682.
274 Vocks, C., Mann, G., and Rausche, G. (2008, March). Formation of suprathermal electron distributions in the quiet solar corona. Astronomy & Astrophysics (A&A) 480: 527–536. https://doi.org/10.1051/0004‐6361:20078826.
275 Vocks, C., Salem, C., Lin, R.P., and Mann, G. (2005, July). Electron Halo and Strahl formation in the solar wind by resonant interaction with whistler waves. The Astrophysical Journal 627: 540–549. https://doi.org/10.1086/430119.
276 von Rosenvinge, T.T., Richardson, I.G., Reames, D.V. et al. (2009, May). The solar energetic particle event of 14 December 2006. Solar Physics 256: 443–462. https://doi.org/10.1007/s11207‐009‐9353‐6.
277 von Steiger, R., Schwadron, N.A., Fisk, L.A. et al. (2000, December). Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. Journal of Geophysical Research: Space Physics 105: 27217–27238. https://doi.org/10.1029/1999JA000358.
278 Wang, Y., Wei, F.S., Feng, X.S. et al. (2012, March). Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts. The Astrophysical Journal 749 (1): 82. https://doi.org/10.1088/0004‐637X/749/1/82.
Читать дальше